

Cáncer de vías biliares: claves de las guías clínicas y su aplicación práctica

11th Dec 2025

Dr Angela Lamarca MD, PhD, MSc

Consultant Medical Oncologist

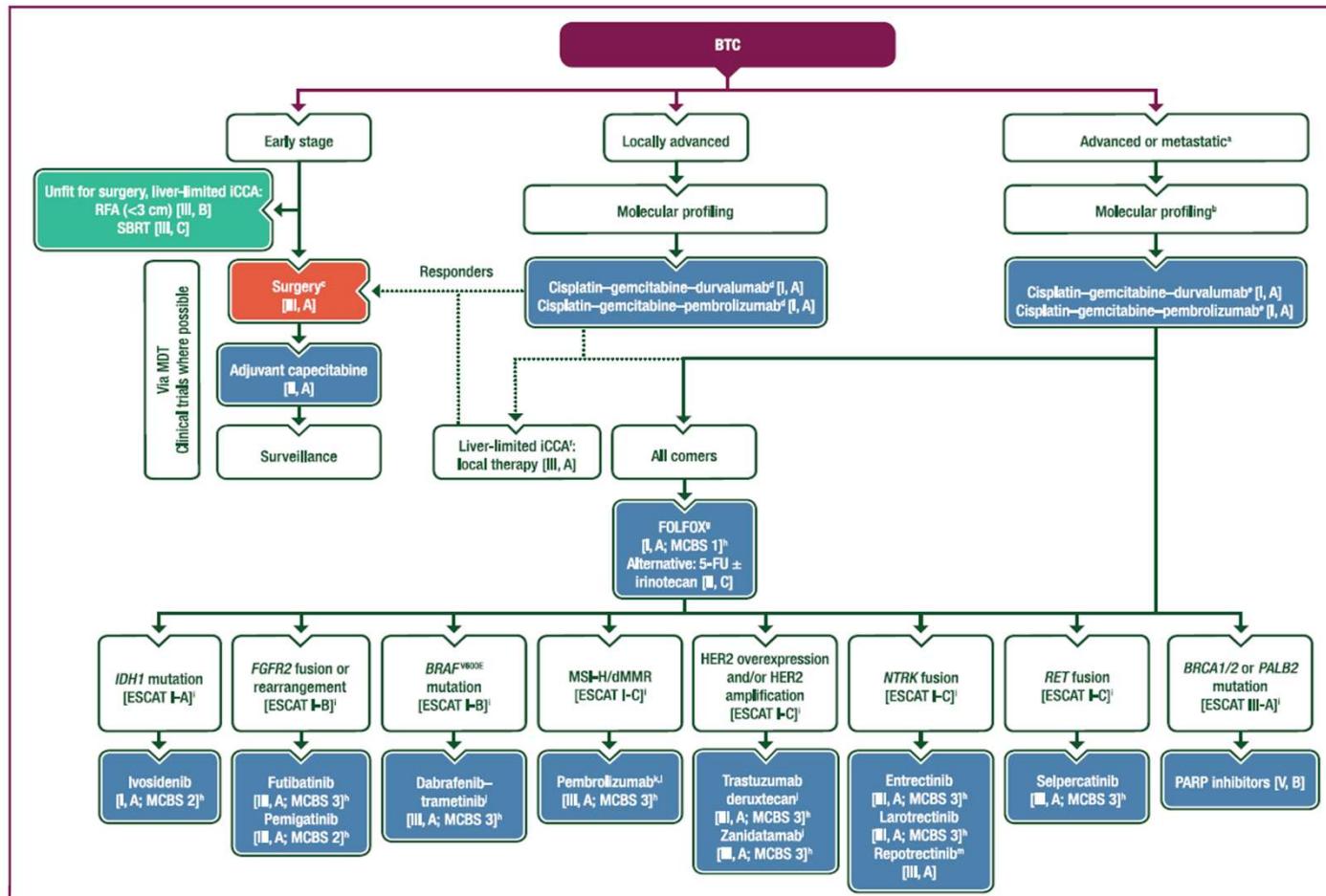
Teaching Consultant - Colaborador Clínico Docente (UAM)

Department of Medical Oncology, Oncohealth Institute

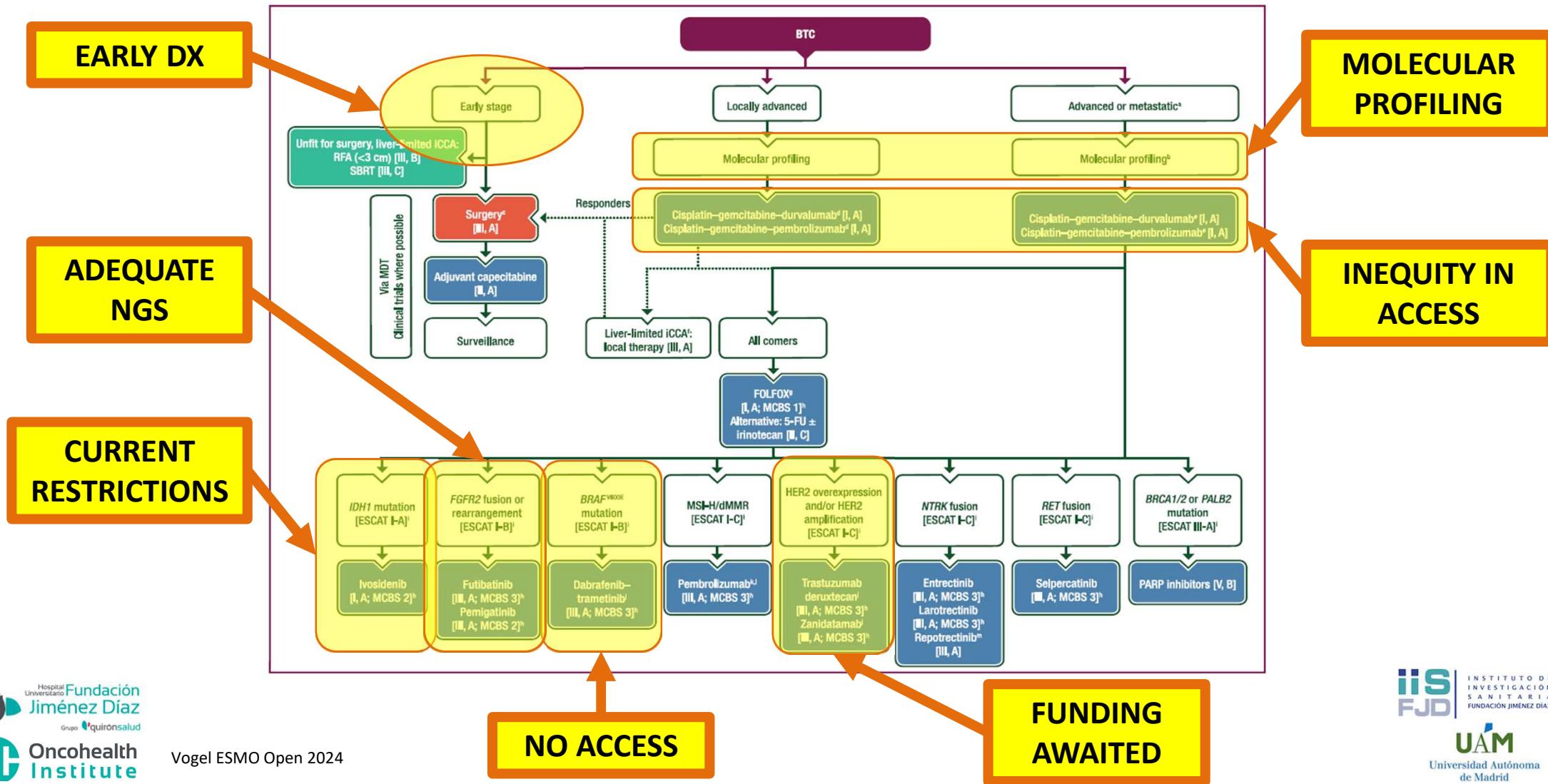
Fundación Jiménez Díaz University Hospital

Health Research Institute Fundación Jiménez Díaz (IIS-FJD)

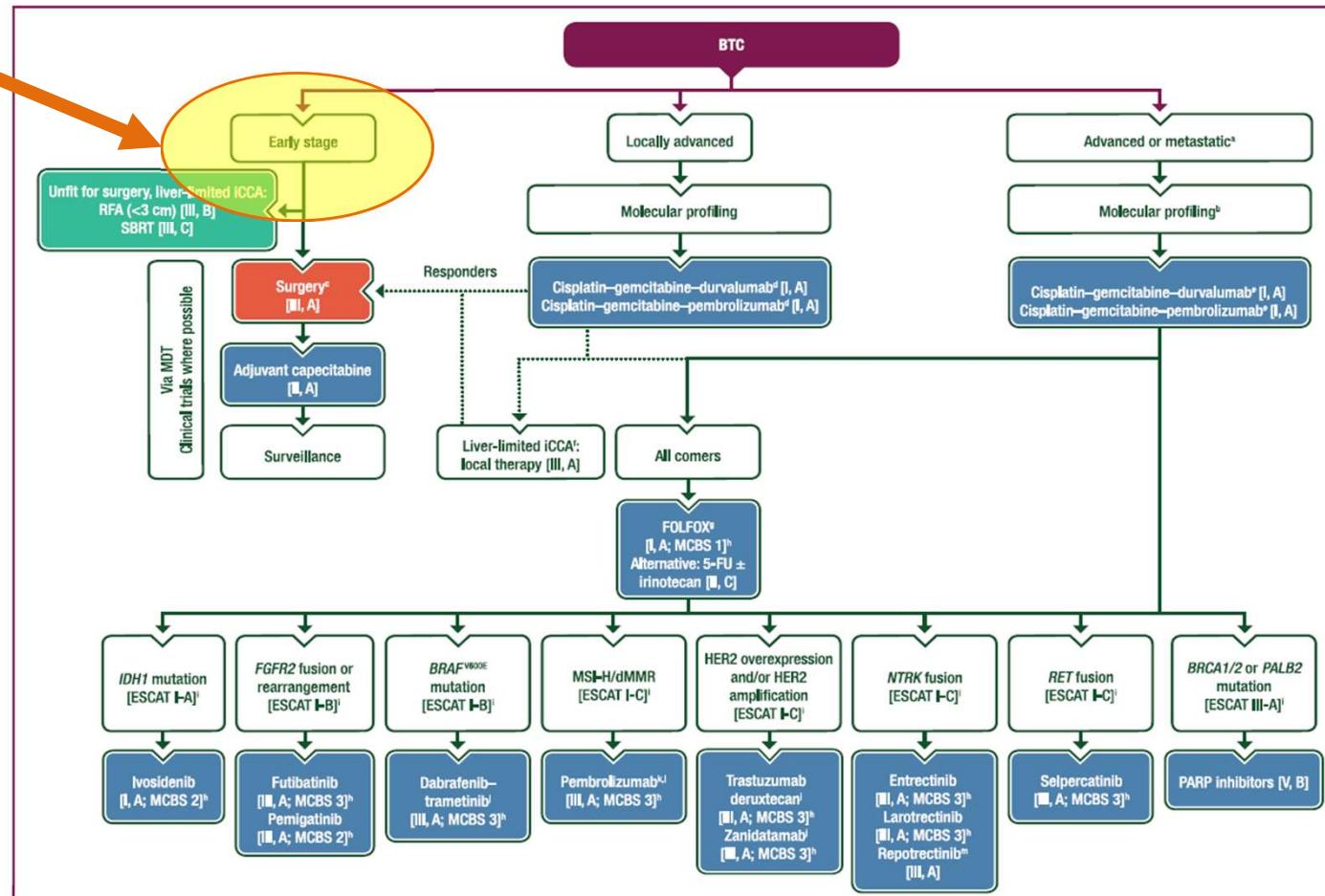
Universidad Autónoma de Madrid (UAM)


Madrid, Spain

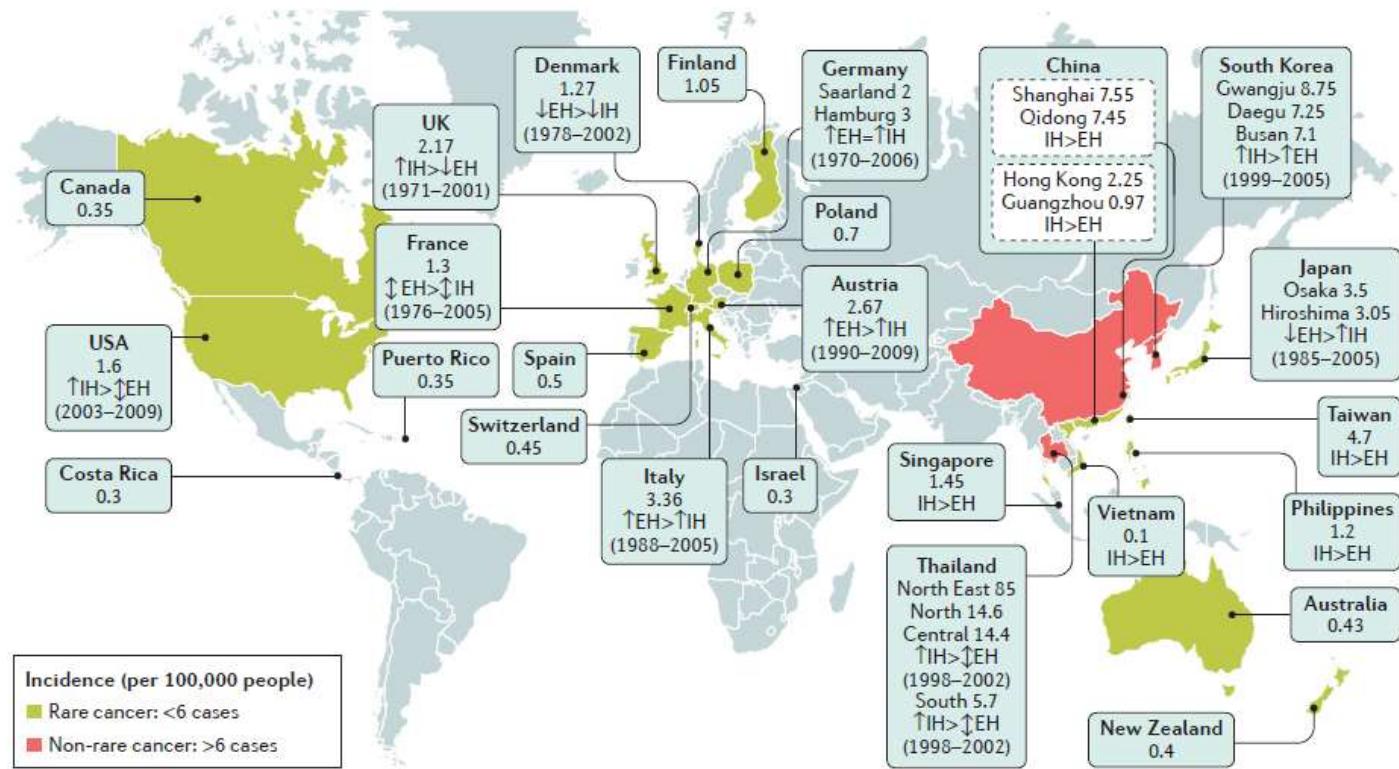
Disclosures



- Travel and educational support from Ipsen, Pfizer, Bayer, AAA, SirtEx, Novartis, Mylan, Delcath Advanz Pharma and Roche.
- Speaker honoraria from Merck, Pfizer, Ipsen, Incyte, AAA/Novartis, QED, Servier, Astra Zeneca, EISAI, Roche, Advanz Pharma and MSD.
- Advisory and consultancy honoraria from EISAI, Nutricia, Ipsen, QED, Roche, Servier, Boston Scientific, Albireo Pharma, AstraZeneca, Boehringer Ingelheim, GENFIT, TransThera Biosciences, Taiho, MSD and Viatris.
- Principal Investigator-associated Institutional Funding from QED, Merck, Boehringer Ingelheim, Servier, Astra Zeneca, GenFit, Panbela Therapeutics, Novocure GmbH, Camurus AB, Albireo Pharma, Taiho, TransThera, JazzTherapeutics and Roche.
- Member of the Knowledge Network and NETConnect Initiatives funded by Ipsen.

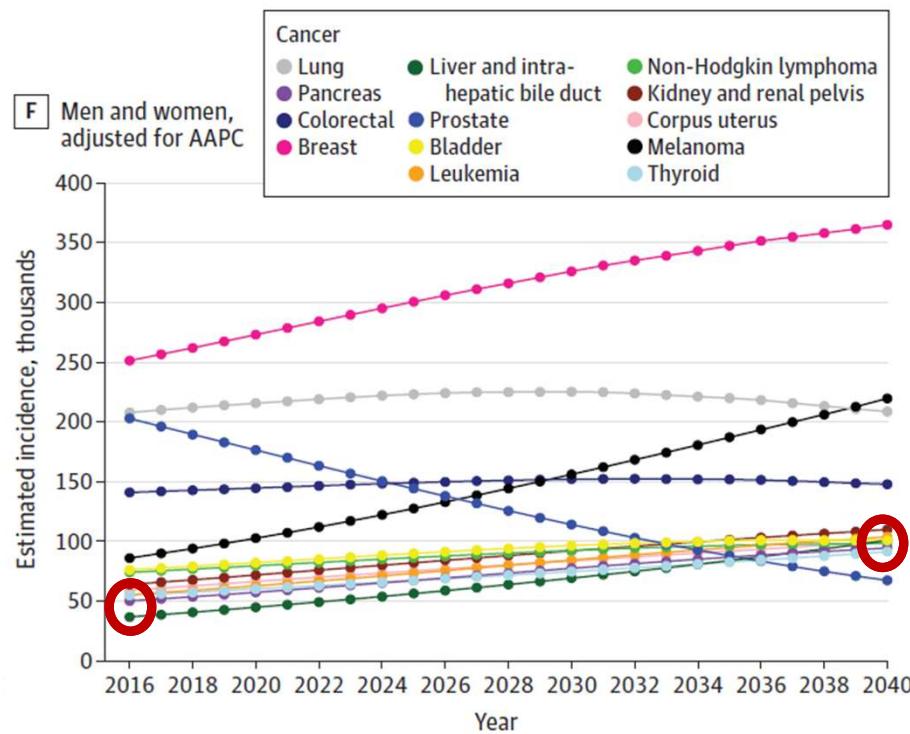

BTC –ESMO GUIDELINES eUpdate 2024

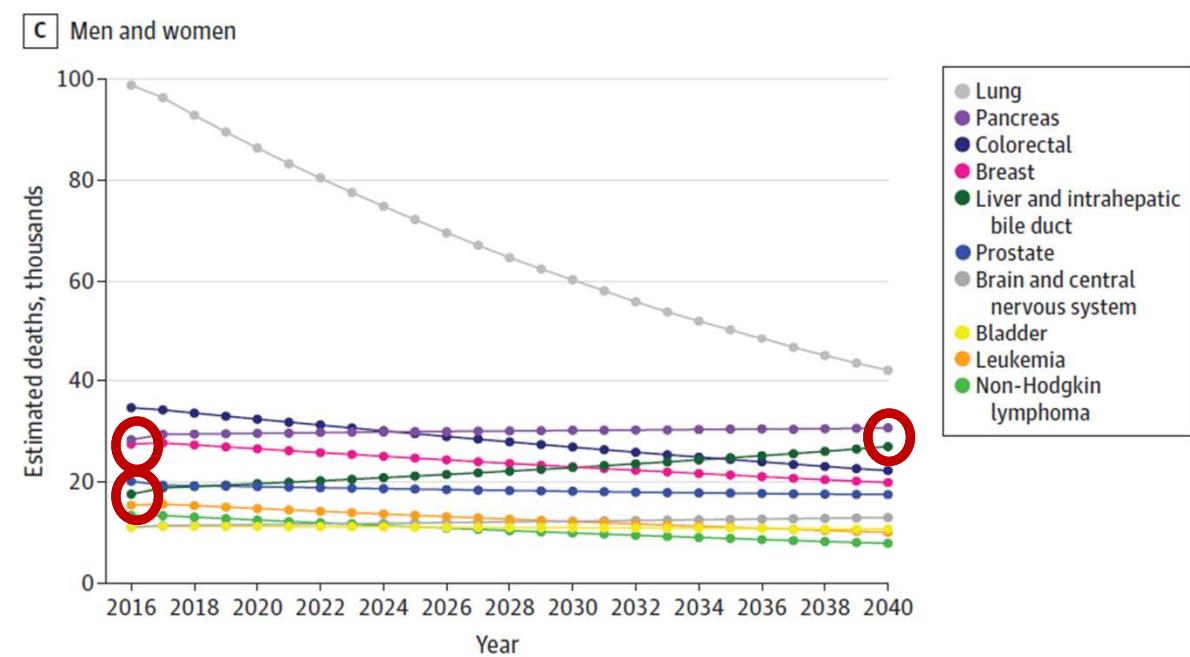
BTC – ESMO GUIDELINES eUpdate 2024 - SPANISH REALITY



BTC – ESMO GUIDELINES eUpdate 2024 - SPANISH REALITY

CCA: Epidemiology

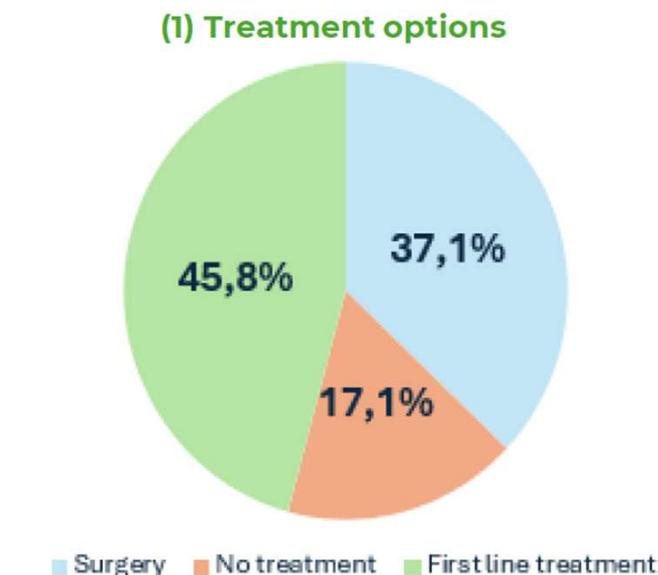

- Rare cancers
 - Incidence: <6/100,000
- Incidence increasing
 - iCCA
- Poor prognosis
 - 5-year OS (<20%)
 - Late diagnosis
 - 70% advanced stages
 - High relapse rate


CCA, cholangiocarcinoma; EH, extrahepatic; iCCA, intrahepatic cholangiocarcinoma; IH, intrahepatic; OS, overall survival.
Bañales JM, et al. *Nat Rev Gastroenterol Hepatol.* 2016;13:261-80; DeOliveira ML, et al. *Ann Surg.* 2007;245:755-62;
Valle JW, et al. *Ann Oncol.* 2016;27(Suppl 5):v28-37.

CCA: Incidence/mortality increasing

Estimated incidence projections (2016 → 2040)

Estimated cancer death projections (2016 → 2040)

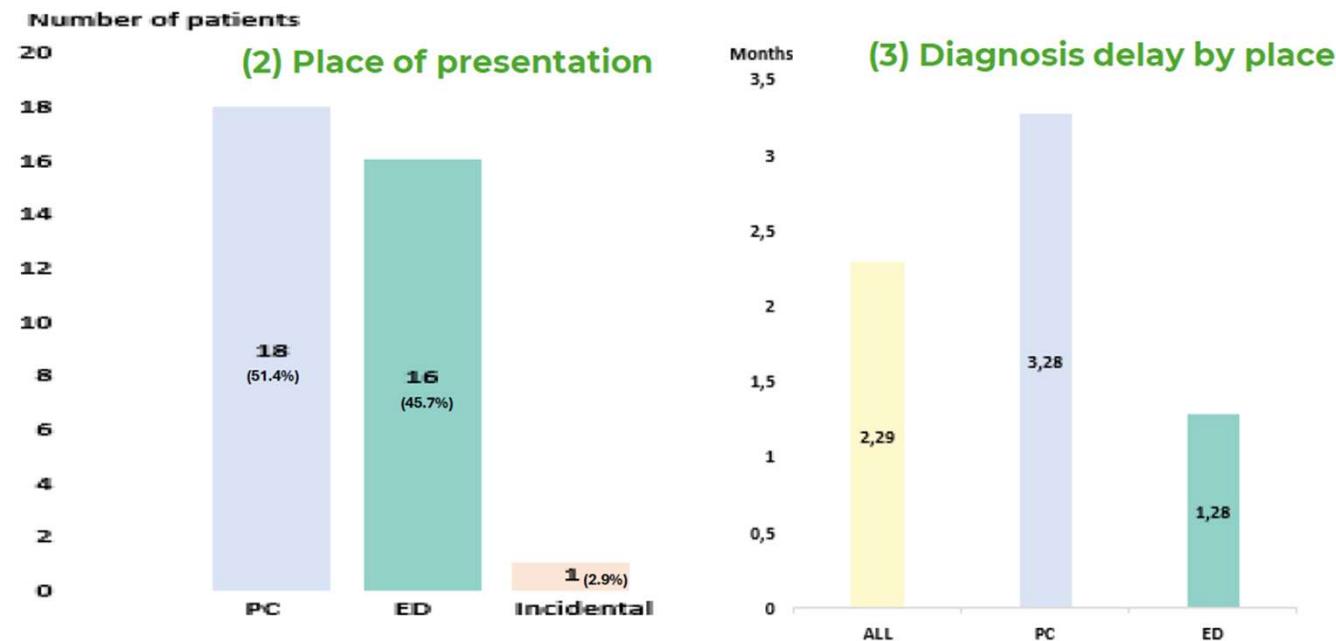


HPB cancers will be the second and third most common causes of cancer death by 2040

AAPC, average annual percent change; CCA, cholangiocarcinoma; HPB, hepato pancreatic biliary.
Rahib L, et al. *JAMA Netw Open*. 2021;4:e214708.

BTC - delayed diagnosis an ongoing issue

- 35 patients: iCCA (42.9%), dCCA (17.1%), gallbladder (14.3%), ampullary (14.3%) and pCCA (11.4%).
- Majority of patients (60%) had metastases at diagnosis. Only 37.1% had surgery and 17.1% did not receive any treatment.


Conclusions:

- Biliary tumours are often **diagnosed at advanced stages** due to significant **diagnostic delays** caused by **non-specific symptoms**.
- These delays **limit curative treatment options** and **worsen prognosis**.
- **Improved early detection strategies and awareness are crucial** to enhancing outcomes and survival rates.

Martirena el at, CCF 2025

BTC - delayed diagnosis an ongoing issue

- Majority 51.4% of patients were diagnosed through primary care (PC) and 45.7% in the emergency department (ED)
- Median time from symptom onset to diagnosis was 2.29 months (3.28mo for PC and 1,28mo for ED; $p=0.39$)

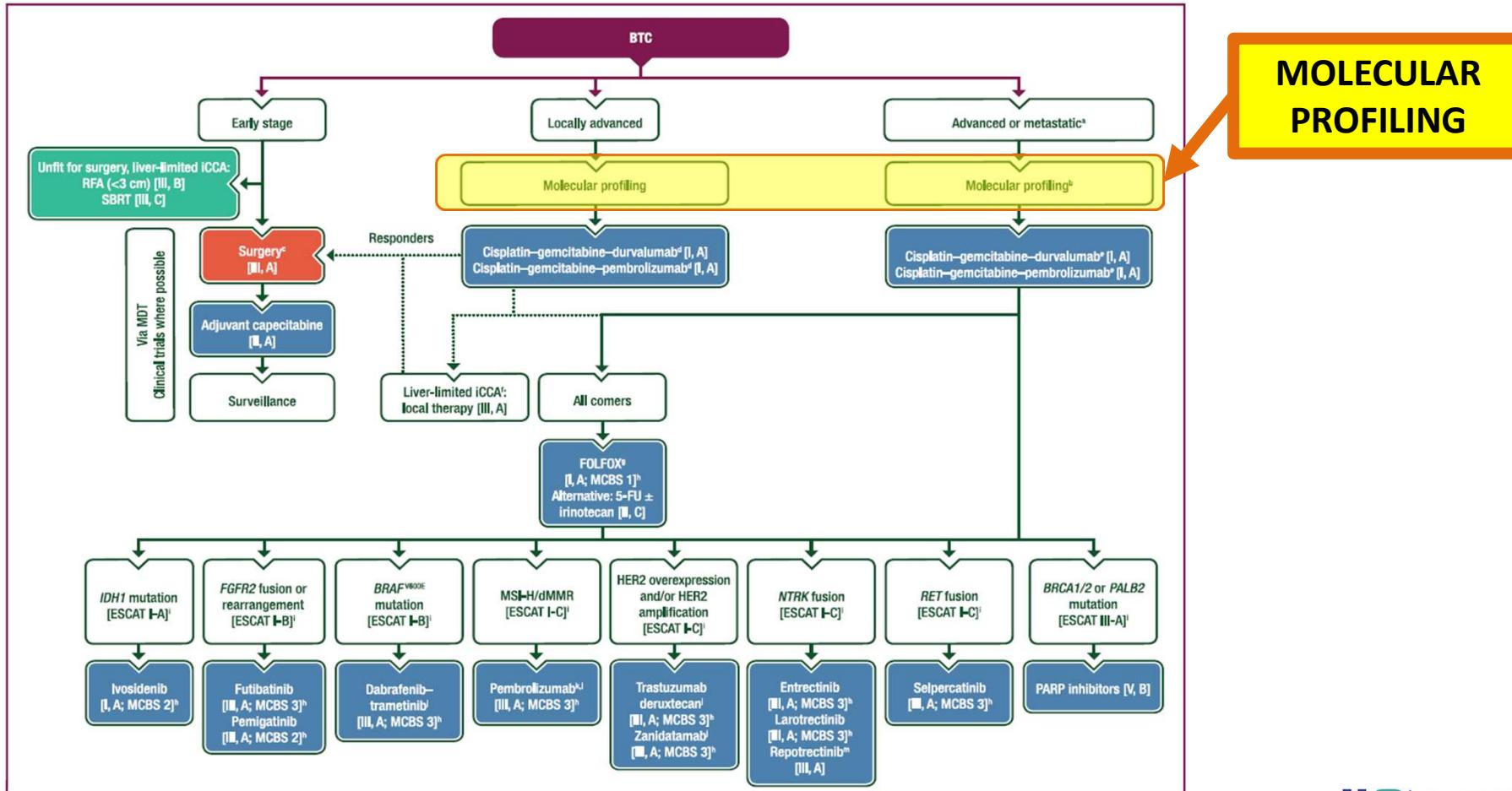
Conclusions:

- Biliary tumours are often **diagnosed at advanced stages** due to significant **diagnostic delays** caused by **non-specific symptoms**.
- These delays **limit curative treatment options** and **worsen prognosis**.
- **Improved early detection strategies and awareness are crucial** to enhancing outcomes and survival rates.

Martirena el at, CCF 2025

SAFIR IMPACT BTC

- Targeted therapies in the Adjuvant setting: phase III clinical trial
- Capecitabine vs Targeted therapies
- Funded secured (ATTRACT 2025) – Coordinator: Dr Edeline
 - Spain: Dr Lamarca- FJD + TTD



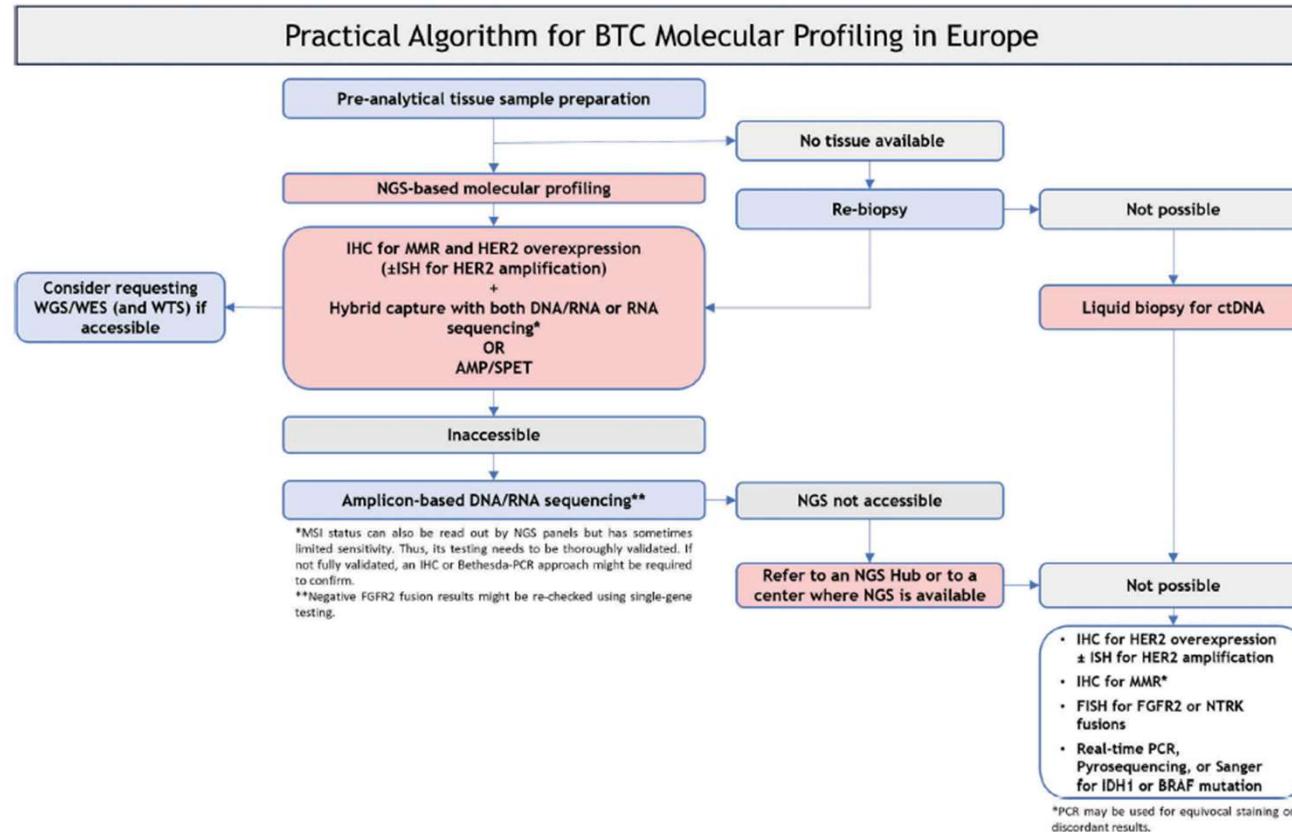
SAFIR IMPACT BTC: Investigating Precision Medicine in the Adjuvant Setting: a Phase III Clinical Trial in Biliary Tract Cancer

International coordinator: Julien Edeline –
Centre Eugène Marquis, Rennes FRANCE

Consortium: Julien Edeline (FR) / Angela Lamaca (ES) / Ivan Borbath (BE) / Marjolein Homs (NL)

BTC – ESMO GUIDELINES eUpdate 2024 - SPANISH REALITY

When and how to test patients

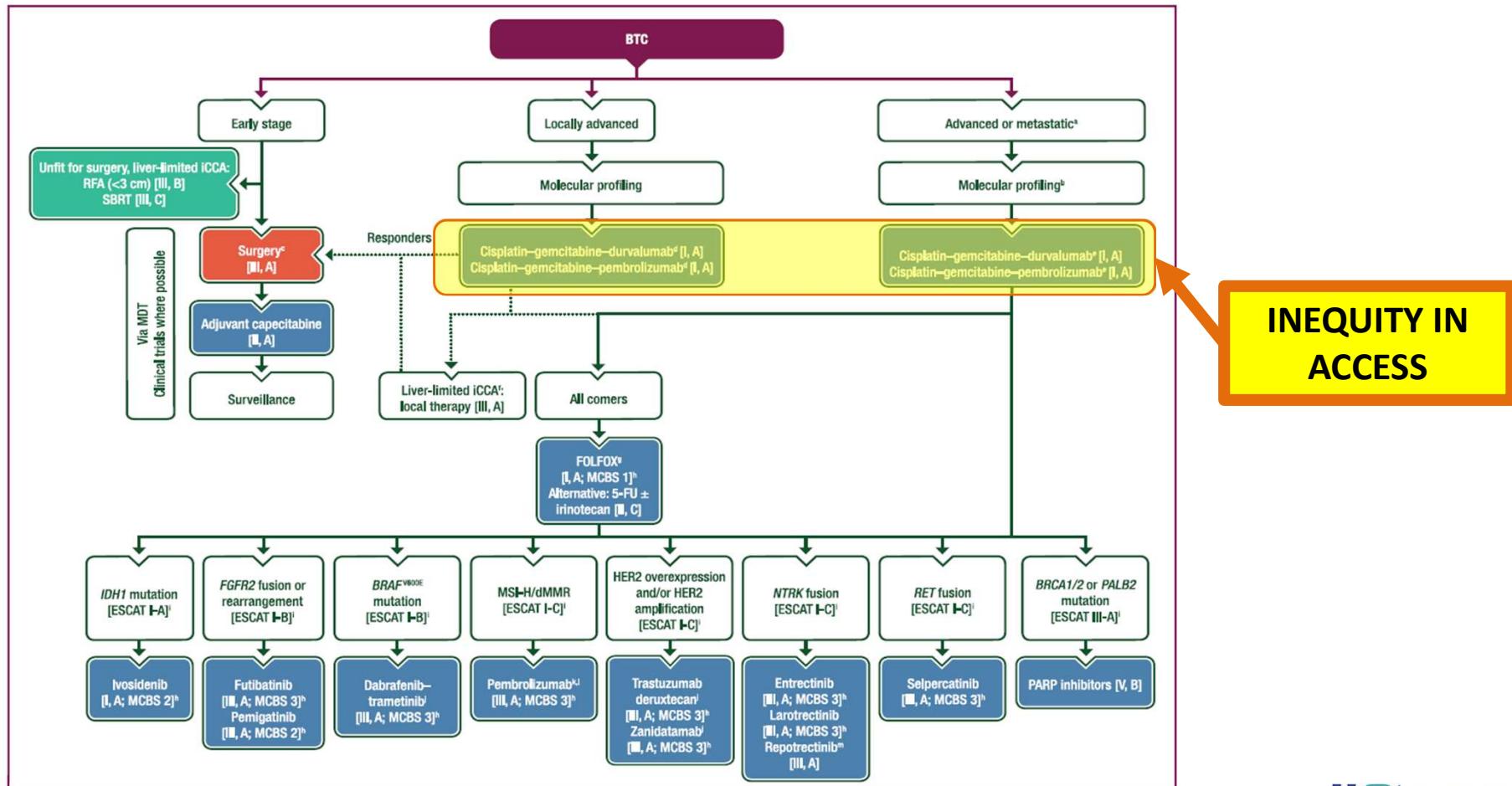

When and how to test patients

- As soon as possible following diagnosis (of advanced disease)
- Unless within a trial, not recommended to hold 1st-line therapy waiting for results

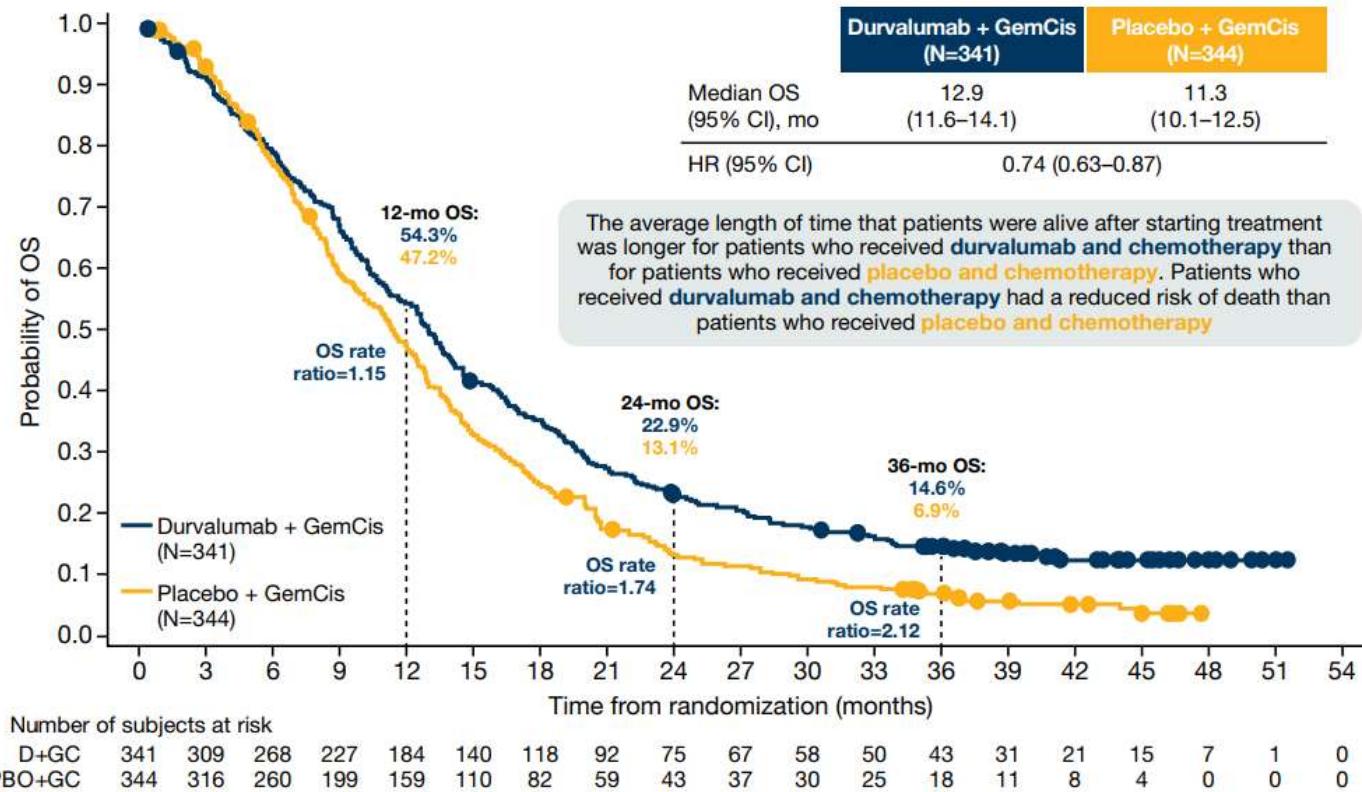
When and how to test patients

- Multigene tumour NGS testing – RNA-based may provide better sensitivity for fusions
- IHC for HER2 and MMR may be quicker and reliable
- ctDNA may be of use if tissue not available

MOLECULAR PROFILING IN BTC – ALGORITHM



AMP: Anchored Multiplex Polymerase Chain Reaction, BTC: Biliary Tract Cancer, ctDNA: Circulating Tumor DNA, FISH: Fluorescence In Situ Hybridization, IHC: Immunohistochemistry, ISH: In Situ Hybridization, MMR: Deficient Mismatch Repair, NGS: Next-Generation Sequencing, SPET: Single Primer Enrichment Technology, PCR: Polymerase Chain Reaction, WES: Whole Exome Sequencing, WGS: Whole Genome Sequencing, WTS: Whole Transcriptome Sequencing.

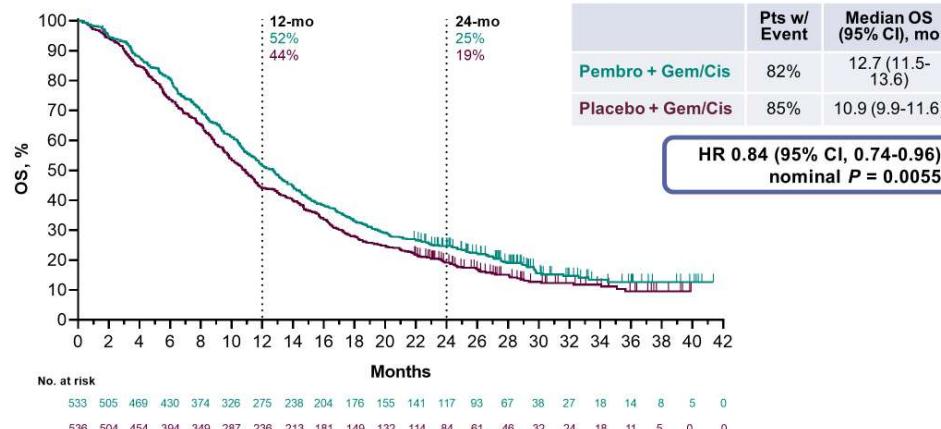

Figure 2. Practical algorithm for BTC molecular profiling in Europe. Approximate section requirements: NGS-based sequencing (10), MMR IHC (6), HER2 IHC (4), HER2 IHC ± FISH (≥3), MSI/MMR IHC ± PCR (≥5), FISH for FGFR2/NTRK (2), IDH1/BRAFV600E by PCR/Sanger (4–6). BTC: biliary tract cancer, ctDNA: circulating tumor DNA, dMMR: deficient mismatch repair, FISH: fluorescence in situ hybridization, IHC: immunohistochemistry, MMR: mismatch repair, MSI: microsatellite instability, NGS: next-generation sequencing, PCR: polymerase chain reaction, WES: whole exome sequencing, WGS: whole genome sequencing.

Stenzinger Expert Revire of Molec Diag 2024

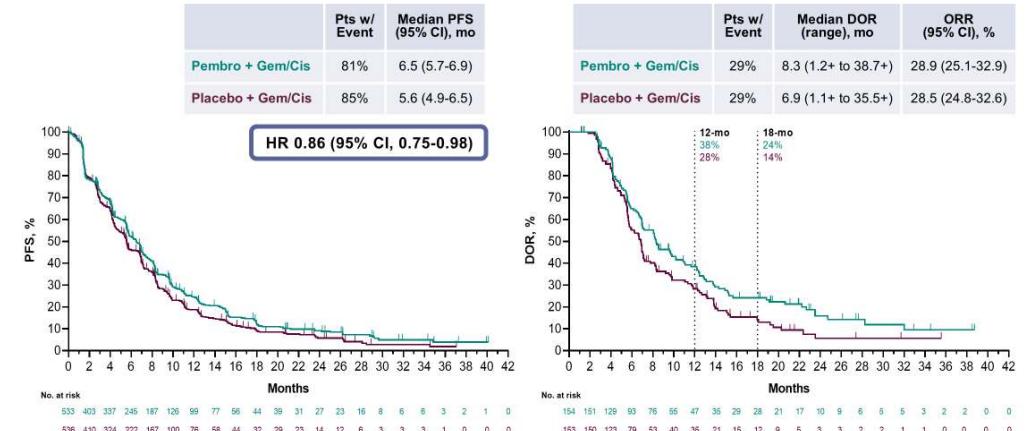
BTC – ESMO GUIDELINES eUpdate 2024 - SPANISH REALITY

TOPAZ-1 LONG TERM BENEFIT CCF 2024

The average length of time that patients were alive after starting treatment was longer for patients who received **durvalumab and chemotherapy** than for patients who received **placebo and chemotherapy**. Patients who received **durvalumab and chemotherapy** had a reduced risk of death than patients who received **placebo and chemotherapy**


Activity data confirmed

First-line – Pembrolizumab + CisGem (KEYNOTE-966)


Updated data with longer follow-up: activity confirmed

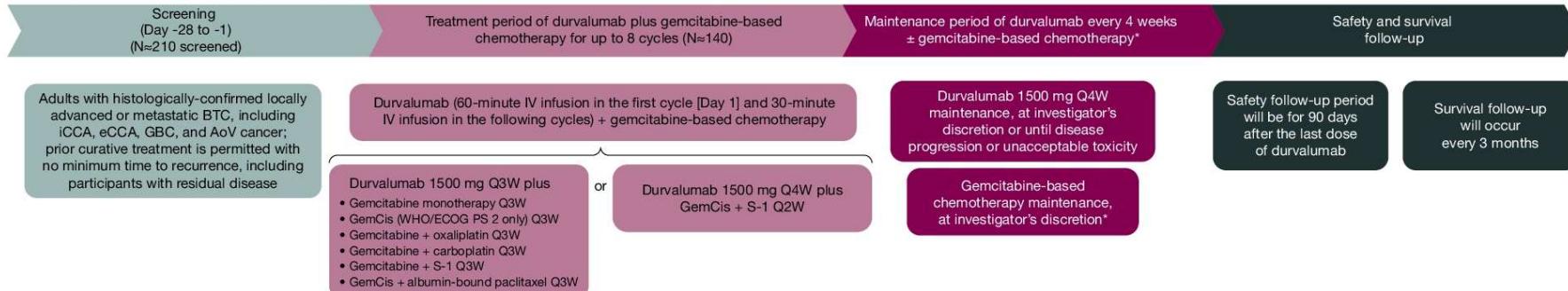
- Here, we present an updated efficacy and safety analysis with an additional 4 months of follow-up
 - Median follow-up² = 29.5 months (39 additional OS events)
 - Median duration on treatment = 6.37 mo in pembrolizumab arm and 5.54 mo in placebo arm

Updated Overall Survival Kaplan-Meier Curve

Updated Progression-Free Survival and Duration of Response Kaplan-Meier Curves

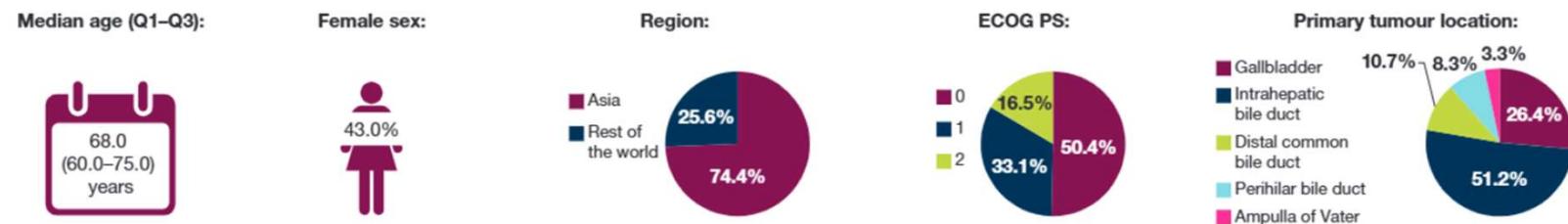
Data cutoff date: April 13, 2023.

TOURMALINE – IO + OTHER CHEMO BACKBONE


Enrollment start: August 2023 | Expected study end: March 2026

- Durvalumab + nonCisGem chemo
- CisGem PS2
- Ampullary tumours included

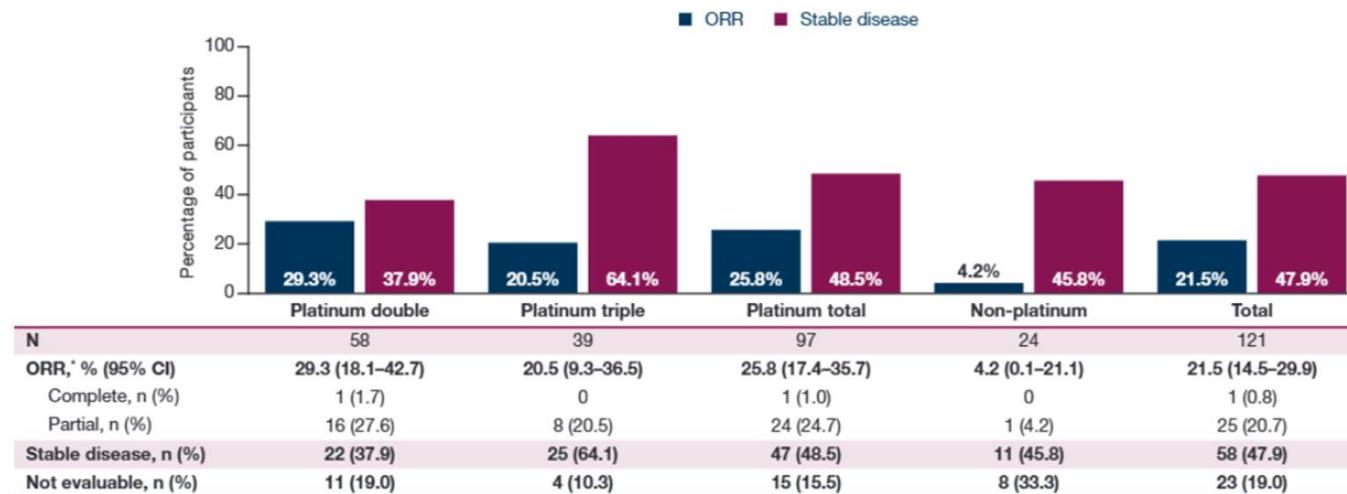
TOURMALINE study design: a Phase 3b, single-arm, multicenter, international study evaluating the safety and efficacy of durvalumab in combination with gemcitabine-based chemotherapy regimens in participants with aBTC



*With the exception of paclitaxel.

aBTC, advanced biliary tract cancer; AoV, ampulla of Vater; BTC, biliary tract cancer; eCCA, extrahepatic cholangiocarcinoma; ECOG, Eastern Cooperative Oncology Group; GBC, gallbladder cancer; GemCis, gemcitabine and cisplatin; iCCA, intrahepatic cholangiocarcinoma; IV, intravenous; PS, performance status; Q2W, every 2 weeks; Q3W, every 3 weeks; Q4W, every 4 weeks; S-1, tegafur-gimeracil-oteracil; WHO, World Health Organization.

TOURMALINE – IO + OTHER CHEMO BACKBONE


Figure 2. Overall participant demographics and clinical characteristics (N=121)

*Includes M1 subtypes.

ECOG PS, Eastern Cooperative Oncology Group performance status; M0, no distant metastasis; M1, metastatic; Mx, metastasis cannot be measured; Q, quartile; TNM, tumour / node / metastasis.

Figure 3. Objective response rate in the safety analysis set

The safety analysis set consisted of all participants who received at least one dose of study treatment. *Based on investigator assessments according to RECIST v1.1. 95% CI calculated using the binomial exact method (Clopper-Pearson).

CI, confidence interval; ORR, objective response rate; RECIST 1.1, Response Evaluation Criteria in Solid Tumors, version 1.1.

Oh et al ESMO-GI 2025

TOURMALINE – IO + OTHER CHEMO BACKBONE

Table 2. Adverse events in the safety analysis set

	Platinum double	Platinum triple	Platinum total	Non-platinum	Total*
N	58	39	97	24	121
Any Grade 3 / 4 PRAE within 6 months of treatment initiation, ^{††} n (%)	29 (50.0)	16 (41.0)	45 (46.4)	10 (41.7)	55 (45.5)
Any AE, n (%)	52 (89.7)	38 (97.4)	90 (92.8)	22 (91.7)	112 (92.6)
Any PRAE [†]	47 (81.0)	38 (97.4)	85 (87.6)	21 (87.5)	106 (87.6)
Any AE leading to discontinuation of any study treatment	8 (13.8)	5 (12.8)	13 (13.4)	2 (8.3)	15 (12.4)
Any AE leading to discontinuation of durvalumab	4 (6.9)	1 (2.6)	5 (5.2)	1 (4.2)	6 (5.0)
Any AE with an outcome of death [§]	3 (5.2)	0	3 (3.1)	0	3 (2.5)
Any SAE, n (%)	18 (31.0)	12 (30.8)	30 (30.9)	10 (41.7)	40 (33.1)
Any PRSAE [†]	4 (6.9)	3 (7.7)	7 (7.2)	5 (20.8)	12 (9.9)
Any infusion-related AE, n (%)	2 (3.4)	5 (12.8)	7 (7.2)	0	7 (5.8)
Any infusion-related AE possibly related to durvalumab	1 (1.7)	4 (10.3)	5 (5.2)	0	5 (4.1)
Any immune-mediated AEs, n (%)	7 (12.1)	4 (10.3)	11 (11.3)	2 (8.3)	13 (10.7)
Requiring systemic corticosteroids	6 (10.3)	2 (5.1)	8 (8.2)	2 (8.3)	10 (8.3)
Requiring ≥40 mg prednisone equivalent steroids	2 (3.4)	0	2 (2.1)	2 (8.3)	4 (3.3)

The safety analysis set consisted of all participants who received at least one dose of study treatment. *Platinum total plus non-platinum. [†]As assessed by the investigator. Missing responses are counted as related. ^{††}Grade 3: severe; Grade 4: life-threatening. [§]Not related to any study treatment. ^{||}Derived from preferred term. ^{††}Identified from AEs of special interest and AEs of possible interest using a programmatic approach.

AE, adverse event; PRAE, possibly related (to any study treatment) adverse event; PRSAE, possibly related (to any study treatment) serious adverse event; SAE, serious adverse event.

Safety (Table 2)

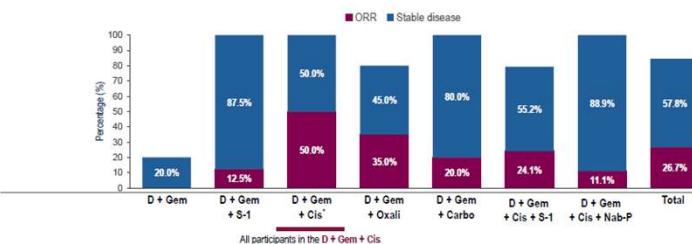
- Grade 3 / 4 PRAEs within 6 months of initiation of any study treatment by DCO occurred in 45.5% (n=55) of participants overall
- Safety was generally comparable between non-platinum versus platinum and platinum double versus triple groups
 - Rates of serious adverse events (SAEs) and possibly related SAEs were higher in the non-platinum versus platinum groups
- Three (2.5%) participants had adverse events (AEs) with an outcome of death, all not related to any study treatment and within the platinum group
- Seven (5.8%) participants had an infusion-related AE, all within the platinum group
- 13 (10.7%) participants had at least one immune-mediated AE

TOURMALINE – Asian Population

Baseline demographics and disease characteristics

	D + Gem	D + Gem + S-1	D + Gem + Cis	D + Gem + Oxali	D + Gem + Carbo	D + Gem + Cis	D + Gem + Cis	Total
	+ S-1				+ Nab-P			
N	5	8	14	20	5	29	9	90
Age, median (Q1–Q3), years	78.0 (76.0–80.0)	72.0 (52.5–73.5)	68.5 (65.0–75.0)	65.5 (58.0–69.0)	58.0 (50.0–67.0)	65.0 (54.0–74.0)	63.0 (49.0–71.0)	66.5 (56.0–74.0)
Female sex, n (%)	4 (80.0)	3 (37.5)	8 (57.1)	8 (40.0)	1 (20.0)	8 (27.6)	4 (44.4)	36 (40.0)
Primary tumour location, n (%)								
Gallbladder	3 (60.0)	2 (25.0)	5 (35.7)	8 (40.0)	1 (20.0)	7 (24.1)	1 (11.1)	27 (30.0)
Intrahepatic bile duct	1 (20.0)	4 (50.0)	5 (35.7)	10 (50.0)	3 (60.0)	17 (58.6)	6 (66.7)	46 (51.1)
Distal common bile duct	0	1 (12.5)	3 (21.4)	0	1 (20.0)	2 (6.9)	1 (11.1)	8 (8.9)
Perihilar bile duct	1 (20.0)	1 (12.5)	0	1 (5.0)	0	3 (10.3)	1 (11.1)	7 (7.8)
Ampulla of Vater	0	0	1 (7.1)	1 (5.0)	0	0	0	2 (2.2)
ECOG PS, n (%)								
0	2 (40.0)	8 (100.0)	0	6 (30.0)	3 (60.0)	24 (82.8)	8 (88.9)	51 (56.7)
1	2 (40.0)	0	0	14 (70.0)	2 (40.0)	5 (17.2)	1 (11.1)	24 (26.7)
2	1 (20.0)	0	14 (100)	0	0	0	0	15 (16.7)
TNM classification, n (%)								
M0	3 (60.0)	2 (25.0)	3 (21.4)	1 (5.0)	1 (20.0)	9 (31.0)	3 (33.3)	22 (24.4)
M1	2 (40.0)	6 (75.0)	10 (71.4)	19 (95.0)	4 (80.0)	20 (69.0)	6 (66.7)	67 (74.4)
Mx	0	0	1 (7.1)	0	0	0	0	1 (1.1)

TOURMALINE. First Subject In: 16 August 2023; Last Subject In: 07 March 2025; Last Study Subject Dosed: 17 March 2025. The final DCO is defined by the time of the OS Final Analysis, which will take place when there is 65% OS maturity or the last participant has had the opportunity to be followed up for a minimum of 12 months, whichever occurs first (expected March 2028). At data cut-off, 90 participants from Asia (Korea [n=58], Japan [n=25], Singapore [n=5]) had received treatment. Carbo, carboplatin; Cis, cisplatin (NIMP); D, durvalumab (IMP); Gem, gemcitabine (NIMP); IMP, investigational medicinal product; M0, no distant metastasis; M1, metastatic; Mx, metastasis cannot be measured; Nab-P, albumin bound paclitaxel (NIMP); NIMP, Non-IMP; Oxali, oxaliplatin; OS, overall survival; Q1, lower quartile; Q3, upper quartile; S-1, tegafur-gimeracil-oteracil; THM, tumour, nodes, metastasis.


Dr Do-You Oh

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Data cut-off: 7 Aug 2024

Objective response rate

N	5	8	14	20	5	29	9	90
ORR, % (95% CI)*	0 (0.52–1.18)	12.5% (0.32–52.65)	50.0% (23.04–76.96)	35.0% (15.39–59.22)	20.0% (0.51–71.64)	24.1% (10.30–43.54)	11.1% (0.28–48.25)	26.7% (17.89–37.03)
Complete	0	0	0	1 (5.0)	0	0	0	1 (1.1)
Partial	0	1 (12.5)	7 (50.0)	6 (30.0)	1 (20.0)	7 (24.1)	1 (11.1)	23 (25.6)

Stable disease, n (%)

*Responses exclude unconfirmed responses. *95% CI calculated using the binomial exact method (Clogger-Pearson).
Carbo, carboplatin; CI, confidence interval; Cis, cisplatin (NIMP); D, durvalumab (IMP); Gem, gemcitabine (NIMP); IMP, investigational medicinal product; N, number of subjects per set; Nab-paclitaxel, albumin bound paclitaxel (NIMP); NIMP, Non-IMP; Oxali, oxaliplatin; PS, performance status; S-1, tegafur-gimeracil-oteracil.
REGIST version 1.1 Response Evaluation Criteria in Solid Tumours version 1.1.

Dr Do-You Oh

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Data cut-off: 7 Aug 2024

Safety and ORR for the D + Gem + Cis subgroup (ECOG PS 2) in the **global ITT** population

D + Gem + Cis (n=18)	
Any Grade 3 / 4 PRAE within 6 months of treatment initiation, n (%)	9 (50.0)
Any AE, n (%)	17 (94.4)
Any AE possibly related to study treatment [*]	16 (88.9)
Any Grade 3 / 4 AE	13 (72.2)
Any AE with an outcome of death	1 (5.6)
Any AE leading to discontinuation of any treatment	2 (11.1)
Any SAE, n (%)	6 (33.3)
Any SAE possibly related to any study treatment [*]	0
Any Grade 3 / 4 SAE	3 (16.7)
SAE leading to discontinuation of any treatment	2 (11.1)
Any immune-mediated AE [†] , n (%)	4 (22.2)
Any infusion related AE, n (%)	1 (5.6)
Hypersensitivity / anaphylactic reactions AE, n (%)	0
D + Gem + Cis (n=18)	
ORR [‡] , % (95% CI) [§]	44.4 (21.53, 69.24)
Complete response	0
Partial response	8 (44.4)
Stable disease	8 (44.4)

^{*}Investigator assessed. [†]Immune mediated AEs are identified from AEs of special interest and adverse events of possible interest using a programmatic approach. [‡]Responses exclude unconfirmed responses. [§]95% CI calculated using the binomial exact method (Clopper-Pearson). RECIST version 1.1 Response Evaluation Criteria in Solid Tumours version 1.1. All other treatment groups had n=0 or n=2 (D + G) for ECOG PS 2 data.
AE, adverse event; Cis, cisplatin (NIMP); CI, confidence interval; D, durvalumab (IMP); ECOG, Eastern Cooperative Oncology Group; Gem, gemcitabine (NIMP); IMP, investigational medicinal product; ITT, intention to treat; NIMP, Non-IMP; ORR, objective response rate; PRAE, possibly related adverse event; PS, performance status;

Dr Do-Youn Oh

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Data cut-off: 7 Aug 2024

TOURMALINE – CisGemDurva PS2 efficacy and toxicity

Safety and ORR for the D + Gem + Cis subgroup (ECOG PS 2) in the global ITT population

D + Gem + Cis (n=18)	
Any Grade 3 / 4 PRAE within 6 months of treatment initiation, n (%)	9 (50.0)
Any AE, n (%)	17 (94.4)
Any AE possibly related to study treatment*	16 (88.9)
Any Grade 3 / 4 AE	13 (72.2)
Any AE with an outcome of death	1 (5.6)
Any AE leading to discontinuation of any treatment	2 (11.1)
Any SAE, n (%)	6 (33.3)
Any SAE possibly related to any study treatment*	0
Any Grade 3 / 4 SAE	3 (16.7)
SAE leading to discontinuation of any treatment	2 (11.1)
Any immune-mediated AE†, n (%)	4 (22.2)
Any infusion related AE, n (%)	1 (5.6)
Hypersensitivity / anaphylactic reactions AE, n (%)	0
D + Gem + Cis (n=18)	
ORR‡, % (95% CI)§	44.4 (21.53, 69.24)
Complete response	0
Partial response	8 (44.4)
Stable disease	8 (44.4)

*Investigator assessed. †Immune mediated AEs are identified from AEs of special interest and adverse events of possible interest using a programmatic approach. ‡Responses exclude unconfirmed responses. §95% CI calculated using the binomial exact method (Clopper-Pearson). RECIST version 1.1 Response Evaluation Criteria in Solid Tumors version 1.1. All other treatment groups had n=0 or n=2 (0 + 2) for ECOG PS 2 data.

AE, adverse event; Cis, cisplatin (NIMP); CI, confidence interval; D, durvalumab (IMP); ECOG, Eastern Cooperative Oncology Group; Gem, gemcitabine (NIMP); IMP, investigational medicinal product; ITT, intention to treat; NIMP, Non-IMP; ORR, objective response rate; PRAE, possibly related adverse event; PS, performance status;

Dr Do-Youn Oh

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Data cut-off: 7 Aug 2024

TOURMALINE GLOBAL POPULATION; CisGemDurva PS2

Oh et al ESMO-Asia 2025

Table 3. Summary of Safety Data in the Safety Analysis Set.

Parameter	Durvalumab plus Gemcitabine and Cisplatin (n=338)	Placebo plus Gemcitabine and Cisplatin (n=342)
Adverse events — no. (%)		
Any grade	336 (99.4)	338 (98.8)
Serious	160 (47.3)	149 (43.6)
Grade 3 or 4	256 (75.7)	266 (77.8)
Leading to discontinuation of any study treatment	44 (13.0)	52 (15.2)
Leading to death	12 (3.6)	14 (4.1)
Treatment-related adverse events — no. (%)		
Any grade	314 (92.9)	308 (90.1)
Serious	53 (15.7)	59 (17.3)
Grade 3 or 4	212 (62.7)	222 (64.9)
Leading to discontinuation of any study treatment	30 (8.9)	39 (11.4)
Leading to death*	2 (0.6)	1 (0.3)

* Treatment-related adverse events leading to death were ischemic stroke and hepatic failure in the durvalumab treatment group and polymyositis in the placebo treatment group.

Table 2. Tumor Response in the Full Analysis Set.*

Parameter	Durvalumab plus Gemcitabine and Cisplatin (n=341)	Placebo plus Gemcitabine and Cisplatin (n=343)
Objective response rate — no. (%)†	91 (26.7)	64 (18.7)
Complete response	7 (2.1)	2 (0.6)
Partial response	84 (24.6)	62 (18.1)
Disease control rate — no. (%)‡	291 (85.3)	284 (82.6)
Median duration of response (IQR) — mo§	6.4 (4.6–17.2)	6.2 (3.8–9.0)
Patients with continued response — %		
≥3 mo	88.9	89.0
≥6 mo	59.3	54.2
≥9 mo	32.6	25.3
≥12 mo	26.1	15.0
Median time to response (IQR) — mo¶	1.6 (1.3–3.0)	2.7 (1.4–4.1)

TOPAZ WHOLE POPULATION CisGemDurva PS0-1

Oh et al NEJM Evidence 2022

TOURMALINE – Asian Population

Conclusions

- In participants from Asia, the safety profiles of durvalumab in combination with seven different gemcitabine-based chemotherapy regimens were manageable
 - Safety results were comparable to those reported for the TOPAZ-1 study
- Interim ORR in the Asian subgroup is comparable with the ORR observed in the durvalumab plus gemcitabine and cisplatin arm in TOPAZ-1
- The overall survival analysis is pending and will be presented at a future congress

A copy of these slides and plain language summary can be accessed via this quick response (QR) code

ORR, objective response rate.

Dr Do-Youn Oh

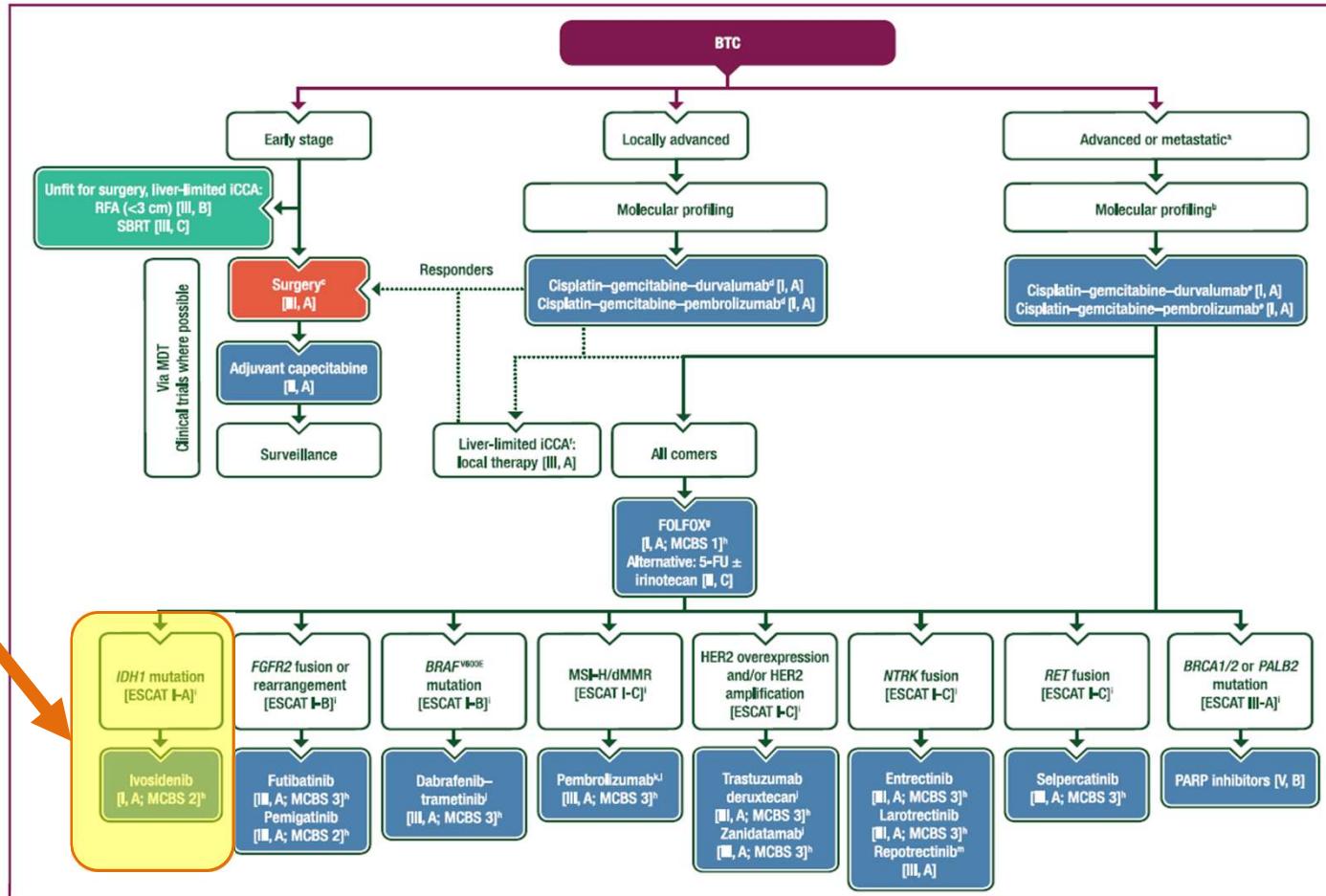
Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

TOURMALINE – Asian Population

- My take home message!
- Doublet better than monotherapy
- CisGemDruva is feasible in PS2!
- Important due to approval status of Durvalumab in many countries (limited to this chemo backbone)

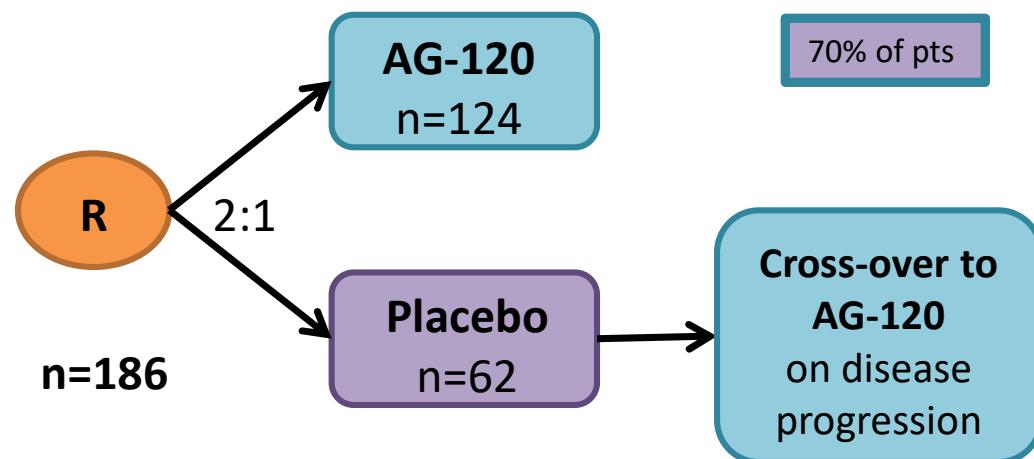
SINGAPORE 2025 ESMO ASIA

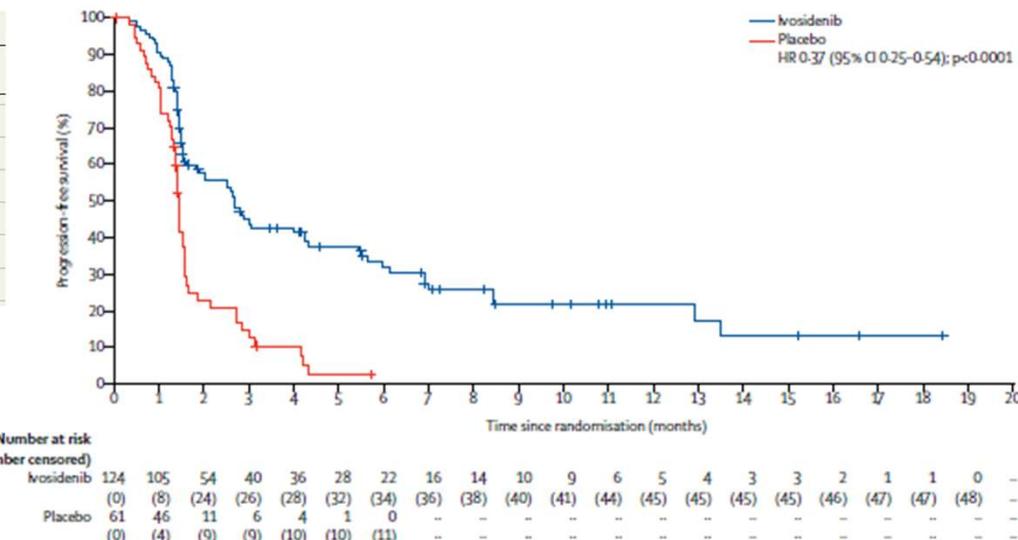
TOURMALINE study of durvalumab (D) in combination with gemcitabine (G)-based chemotherapy in advanced biliary tract cancer (aBTC): early safety and efficacy results in participants (pts) from Asia


Dr Do-Youn Oh

06 December 2025

A copy of these slides and plain language summary can be accessed via this quick response (QR) code


BTC – ESMO GUIDELINES eUpdate 2024 - SPANISH REALITY

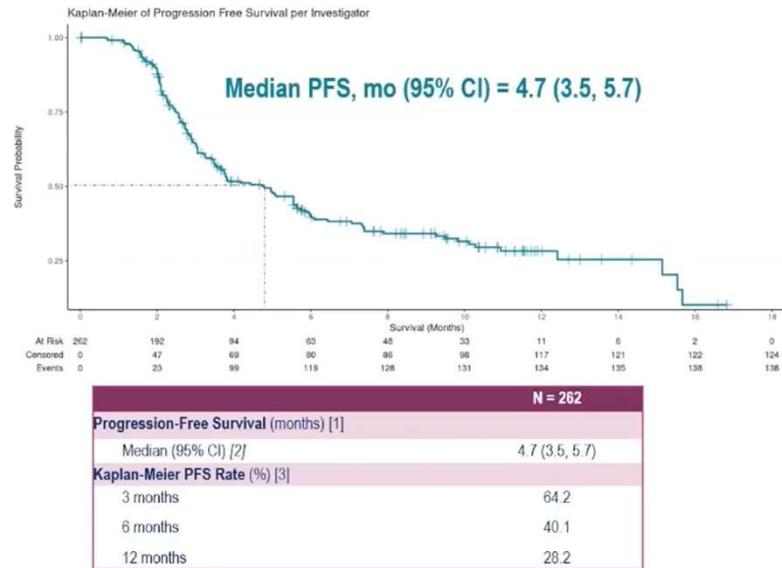

Targeting IDH-1 in CCA: ClarIDHy

Phase III study,
second/third-line,
placebo-
controlled (ClarIDHy)
[NCT02989857]

Characteristic	Patients, No. (%)	
	Ivosidenib (n = 126)	Placebo (n = 61)
<i>IDH1</i> mutation		
R132C	86 (68)	45 (74)
R132L	21 (17)	7 (11)
R132G	17 (13)	6 (10)
R132S	2 (2)	1 (2)
R132H	0	2 (3)

AG-120 (Ivosidenib) is a first-in-class, potent, oral inhibitor of the mutant IDH1 enzyme

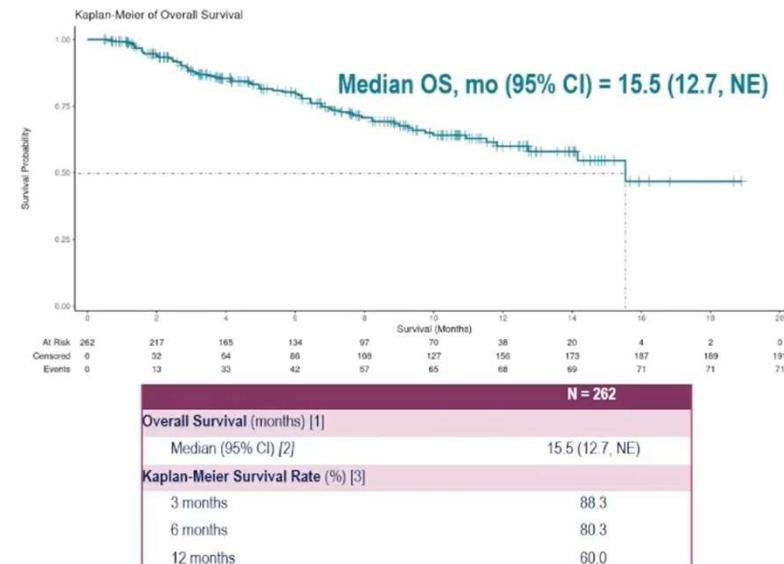
- mPFS (months): 2.7 (Ivosidenib) vs 1.4 (placebo); HR 0.37 (95% CI 0.25-0.54)
 - 6 months PFS rate: 32% vs 0%;
 - 12 months PFS rate: 22% vs 0%
- OS data update 2021:
 - mOS (months; adjusted for cross-over): 10.3 vs 5.1 months (HR = 0.49; 95% CI 0.34-0.70; $p < 0.0001$)
 - mOS (months; unadjusted for cross-over): 10.3 vs 7.5 months (HR = 0.79; 95% CI 0.56-1.12; one-sided $p = 0.093$)


Abou-Alfa et al Lancet Oncol 2020; Zhu Jama Oncol 2021

ProvIDHe – Phase 3b - Ivosidenib for mIDH1-CCA

- Efficacy data – ESMO GI 2025

Efficacy results


in the Full Analysis Set (N = 262)

Percentages are based on N
[1] Progression free survival (PFS) = (Earliest Date of PD or Death – Enrollment Date + 1) / 30 4375.
[2] Median estimates from product-limit (Kaplan-Meier) method. Confidence intervals from Brookmeyer and Crowley method with log-log transformation.
[3] Based on Survival Distribution Function estimates from product-limit method.

John Bridgewater, MD, PhD

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Percentages are based on N
[1] Overall survival (OS) = (Death – Enrollment Date + 1) / 30 4375.
[2] Median estimates from product-limit (Kaplan-Meier) method. Confidence intervals from Brookmeyer and Crowley method with log-log transformation.
[3] Based on Survival Distribution Function estimates from product-limit method.

Bridgewater et al. ESMO GI 2025

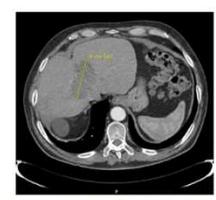
ProvIDHe – Phase 3b - Ivosidenib for mIDH1-CCA

- Efficacy data – ESMO GI 2025

Best Overall Response per Investigator

N = 262	
Best Overall Response, n (%) ^[1]	
Complete Response (CR)	0
Partial Response (PR)	15 (5.7)
Stable Disease (SD)	120 (45.8)
Progressive Disease (PD)	62 (23.7)
Objective Response Rate (CR or PR), n (%)	15 (5.7)
95% CI of Response Rate [2]	(3.2, 9.3)
Duration of Response (months) [3]	N= 15
Median (95% CI)	10.1 (3.0, NE)
Disease Control Rate (CR+PR+SD), n (%)	135 (51.5)

Percentages are based on N.
[1] Patients who did not achieve CR, PR, SD, PD are excluded from Best Overall Response summary as they are considered to not have achieved a best response.
[2] CI: confidence interval. CI of percentage is calculated with the Clopper and Pearson (exact Binomial) method.
[3] Duration of Response = (Earliest Date of PD or Death – Date of First CR or PR + 1) / 30 4375.


John Bridgewater, MD, PhD

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

PR per RECIST
(Decrease from 102 to 78 mm, CT scan showed a complete disappearance of the arterial phase wash-in, consistent with complete necrosis of the lesion)

October 2023

January 2024

Images courtesy of Dr Andrea Casadei-Gardini

Conclusion

- ✓ This interim analysis focused on **preliminary efficacy outcomes** of patients enrolled in the **ProvIDHe study** encompassing the largest cohort of patients with **mIDH1 CCA** treated in a **real-world setting**.
- ✓ In total, **262 patients with mIDH1 CCA** were included in the **Full Analysis Set**. The **median PFS** was **4.7 (3.5, 5.7) months** and the **median OS 15.5 (12.7, NE) months**.
- ✓ These findings **corroborate the efficacy observed in the ClarIDHy trial**, reinforcing the **therapeutic potential of ivosidenib**.
- ✓ The study is still ongoing, and future analyses will consolidate these results.

John Bridgewater, MD, PhD

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Current Ivosidenib funding approval in Spain

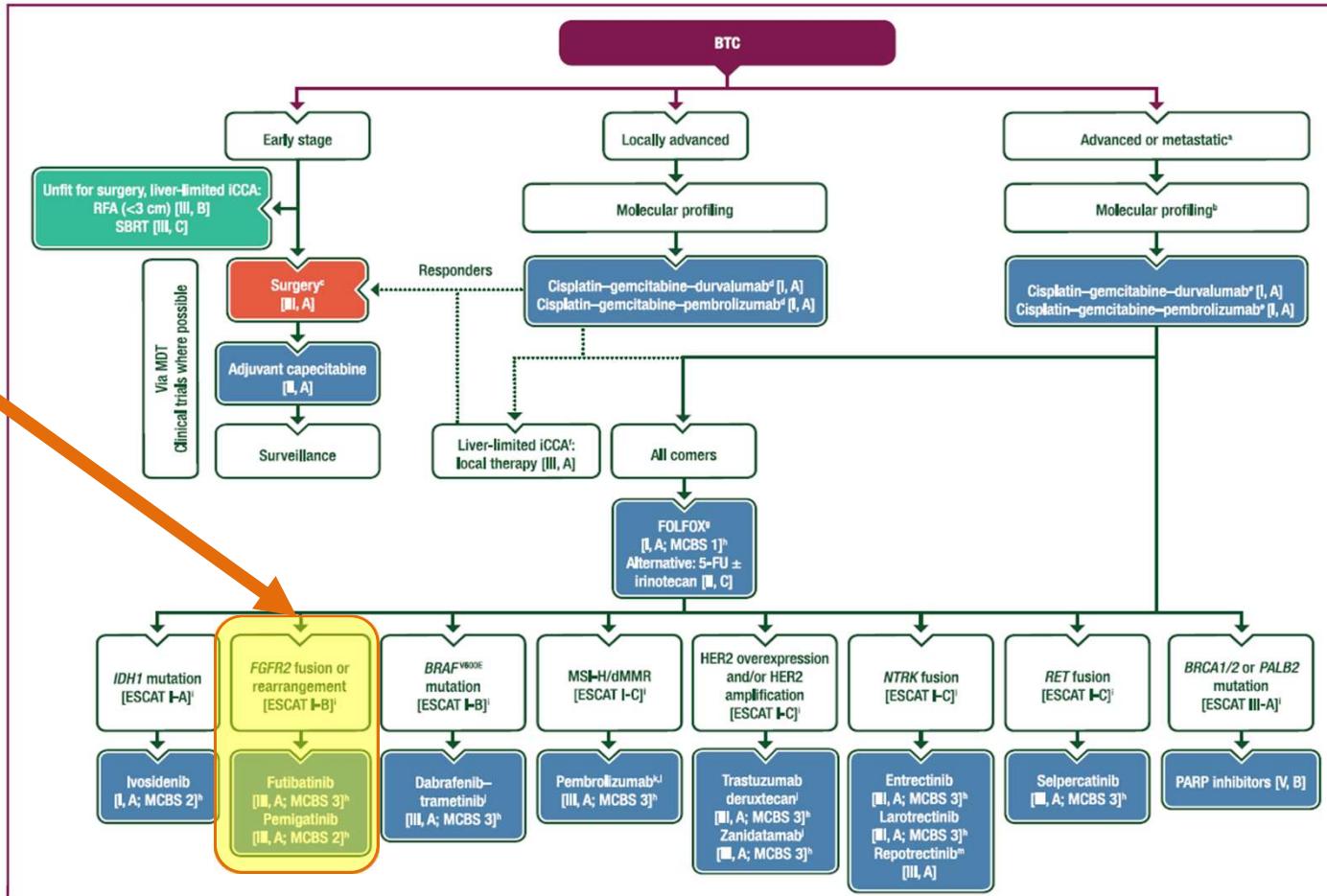
MINISTERIO DE SANIDAD

Castellano | Buscar

Ministerio | Áreas | Prensa y comunicación | Sanidad en datos | Servicios a la Ciudadanía | Participación Pública

WEBS TÉMATICAS | Sede Electrónica

CONSUMO DE MEDICAMENTOS | INFORMACIÓN DIRIGIDA A LA INDUSTRIA

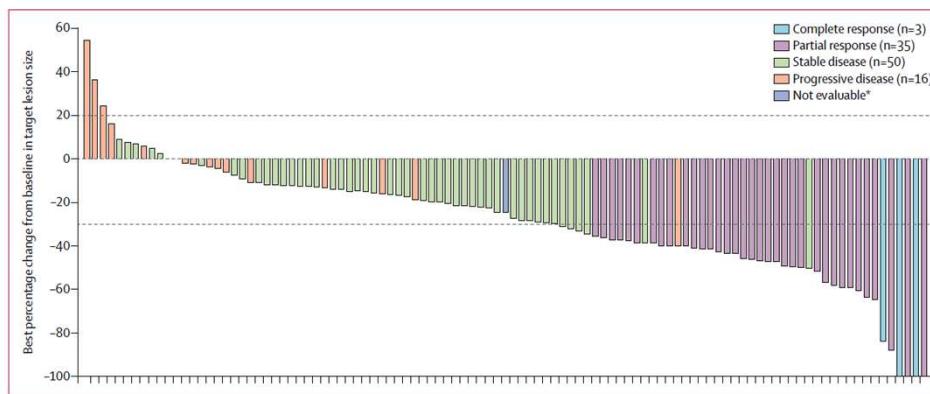

PRINCIPIO ACTIVO O ASOCIACIÓN* | IVOSIDENIB

Indicación autorizada	Situación expediente indicación	Resolución expediente de financiación indicación
Tibsovo en monoterapia está indicado para el tratamiento de pacientes adultos con colangiocarcinoma localmente avanzado o metastásico con mutación IDH1 R132 que hayan recibido al menos una línea previa de tratamiento sistémico (ver sección 5.1).	Resuelto	Sí, con restricción a la indicación autorizada: Se financia en monoterapia para el tratamiento de pacientes adultos con colangiocarcinoma localmente avanzado o metastásico con mutación IDH1 R132 que hayan recibido al menos una línea previa de tratamiento sistémico y que no sean candidatos a FOLFOX.

• Residual neuropathy, prior myelosuppression...
• Not evidence based restriction

<https://www.sanidad.gob.es/profesionales/medicamentos.do?metodo=verDetalle&cn=764181>

BTC – ESMO GUIDELINES eUpdate 2024 - SPANISH REALITY



MOLECULAR PROFILING IN BTC – FGFR2 fusions

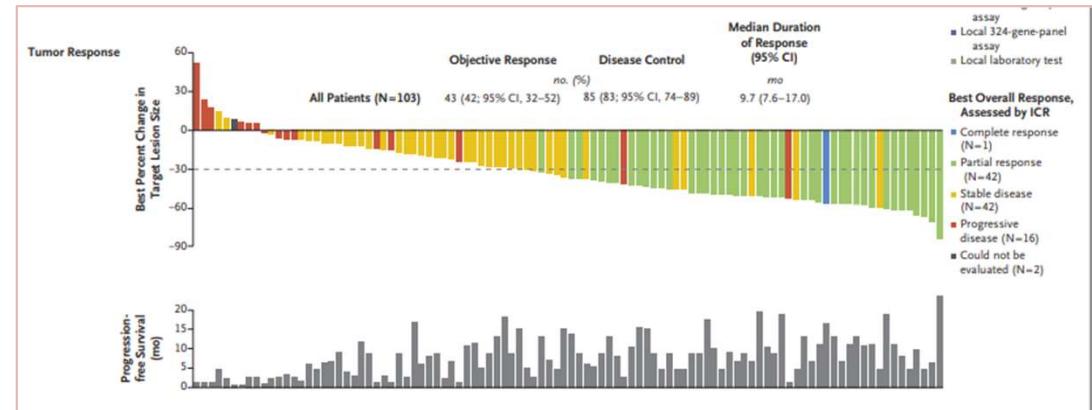
WHY IS IT IMPORTANT NOT TO MISS FGFR2 FUSIONS IN CCA?

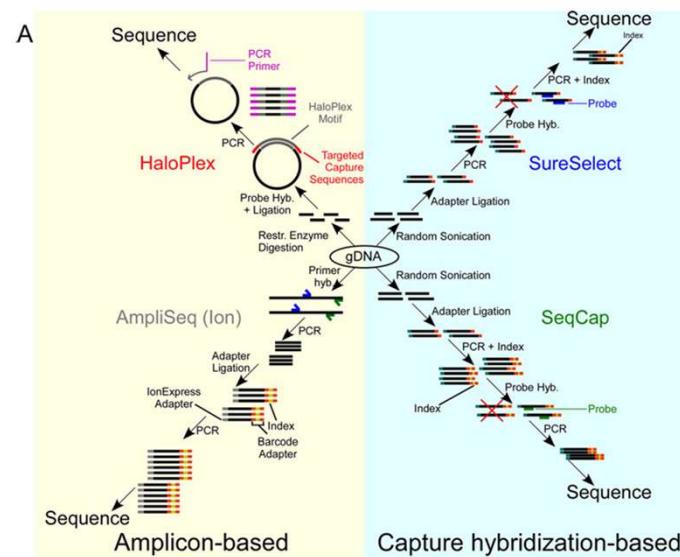
➤ Pemigatinib : FIGHT-202 (phase II)

- Median follow-up: 42,9 months
- ORR 37%
- Median PFS 7 months
- Median OS 17.5 months

➤ Futibatinib : FOENIX-CCA2 (phase II)

- Median follow-up 17.1 months
- ORR: 42%
- Median PFS 9.0 months
- Median OS 21.7 months




Figure 2: Best percentage change from baseline in target lesion size for individual patients with FGFR2 fusions or rearrangements. Coloured bars indicate confirmed responses assessed by RECIST 1.1. FGFR=fibroblast growth factor receptor. RECIST 1.1=Response Evaluation Criteria in Solid Tumors version 1.1. *Patient had a decrease in target lesion size but was not evaluable for response using RECIST.

MOLECULAR PROFILING IN BTC – FGFR2 fusions

“For targeted NGS, two primary enrichment approaches, **hybrid capture** and **amplicon-based** approaches, are widely used.”

Amplicon-based enrichment

- Relies on multiplex PCR to amplify specific target regions using carefully designed primers.
- Is **faster, cost-effective**, and requires **minimal DNA or RNA input**, making it well-suited for targeted analyses
- Amplicon-based enrichment is advantageous for identifying **known mutations**
- However, amplicon-based enrichment has **notable limitations**. It depends on prior knowledge of the genetic alterations, which **restricts its ability to detect unknown or novel variants**, such as previously uncharacterized gene fusions. “

Hybrid capture method

- Allows for the selective capture of both the target genes and their flanking sequences, enabling the detection of gene fusions in a **partner-agnostic manner**
- High sensitivity and specificity for variant detection, providing uniform coverage and the ability to screen for complex biomarkers such as **microsatellite instability (MSI)** and **tumor mutational burden (TMB)**
- Particularly suited for comprehensive genomic profiling in cancers like CCA, where structural variants such as **FGFR2 fusions** are clinically significant”

FGFR2 fusions, multiple partners, many unknown! Amplicon-based not fit for purpose in CCA....

Stenzinger Expert Revire of Molec Diag 2024; Samorodnitsky et al, Juman Mutation 2015

MOLECULAR PROFILING IN BTC – FGFR2 fusions

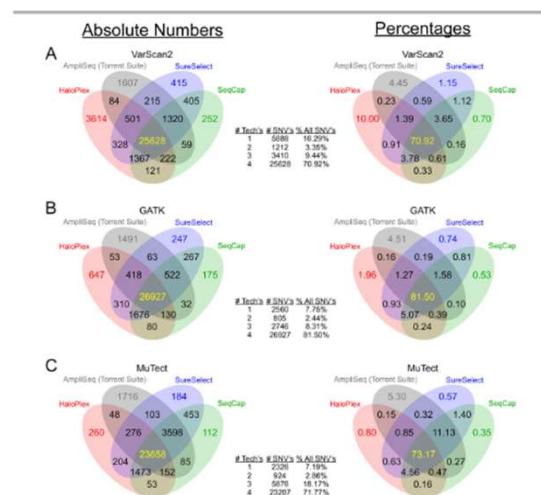
METHODS

Evaluation of Hybridization Capture Versus Amplicon-Based Methods for Whole-Exome Sequencing

Eric Samorodnitsky,¹ Benjamin M. Jewell,¹ Raffi Hagopian,¹ Jharna Miya,¹ Michele R. Wing,¹ Ezra Lyon,¹ Senthilkumar Damodaran,^{1,2} Darshna Bhatt,¹ Julie W. Reeser,¹ Jharna Datta,¹ and Sameek Roychowdhury^{1,2,3*}

¹Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210; ²Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210; ³Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210

Communicated by Graham R. Taylor


Received 3 February 2015; accepted revised manuscript 11 June 2015.

Published online 25 June 2015 in Wiley Online Library (www.wiley.com/humanmutation). DOI: 10.1002/humu.22825

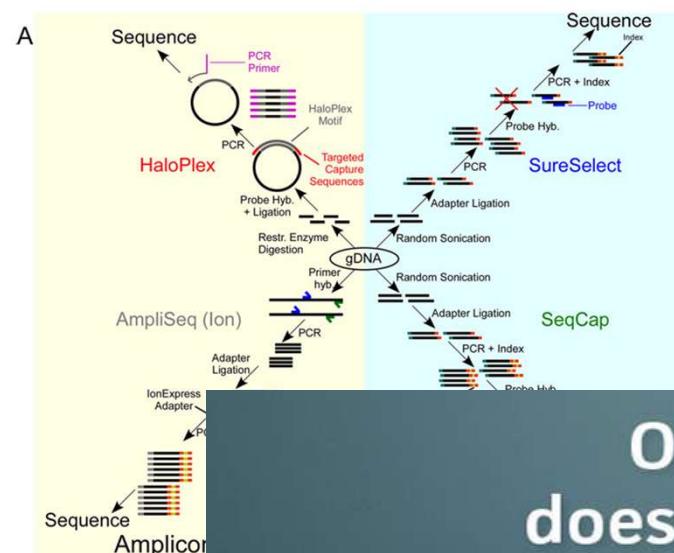
Study comparing hybrid capture with amplicon-based methods

- Hybrid capture was superior to amplicon-based enrichment regarding sequencing complexity, uniformity, and SNV and CNV detection accuracy
- Fewer false-positive and false-negative results with hybrid capture, further supporting its utility in high-quality genomic profiling
- However, hybrid capture requires larger DNA or RNA inputs and is more time-consuming and costly compared with other approaches

Human Mutation

Figure 5. Concordance of SNV calling among technologies. Utilizing three variant callers, **A**, VarScan2; **B**, GATK; and **C**, MuTect, Venn diagrams compare absolute numbers of nonhomologous SNVs (left) and percentage of the total number of nonhomologous SNVs (right) in commonly targeted regions. Tables in the center count the number and percentage of concordant SNVs called by strictly one, two, three, or all four technologies.

ABSTRACT: Next-generation sequencing has aided characterization of genomic variation. While whole-genome sequencing may capture all possible mutations, whole-exome sequencing remains cost-effective and captures most phenotype-altering mutations. Initial strategies for exome enrichment utilized a hybridization-based capture approach. Recently, amplicon-based methods were designed to simplify preparation and utilize smaller DNA inputs. We evaluated two hybridization capture-based and two amplicon-based whole-exome sequencing approaches, utilizing both Illumina and Ion Torrent sequencers, comparing on-target alignment, uniformity, and variant calling. While the amplicon methods had higher on-target rates, the hybridization capture-based approaches demonstrated better uniformity. All methods identified many of the same single-nucleotide variants, but each amplicon-based method missed variants detected by the other three methods and reported additional variants discordant with all three other technologies. Many of these potential false positives or negatives appear to result from limited coverage, low variant frequency, vicinity to read starts/ends, or the need for platform-specific variant calling algorithms. All methods demonstrated effective copy-number variant calling when evaluated against a single-nucleotide polymorphism array. This study illustrates some differences between whole-exome sequencing approaches, highlights the need for selecting appropriate variant calling based on capture method, and will aid laboratories in selecting their preferred approach.


Hum Mutat 36:903–914, 2015. Published 2015 Wiley Periodicals, Inc.*

MOLECULAR PROFILING IN BTC – FGFR2 fusions

“For targeted NGS, two primary enrichment approaches, hybrid capture and amplicon-based approaches, are widely used.”

ABSTRACT: Next-generation sequencing has aided characterization of genomic variation. While whole-genome sequencing may capture all possible mutations, whole-exome sequencing remains cost-effective and captures most phenotype-altering mutations. Initial strategies for exome enrichment utilized a hybridization-based capture approach. Recently, amplicon-based methods were designed to simplify preparation and utilize smaller DNA inputs. We evaluated two hybridization capture-based and two amplicon-based whole-exome sequencing approaches, utilizing both Illumina and Ion Torrent sequencers, comparing on-target alignment, uniformity, and variant calling. While the amplicon methods had higher on-target rates, the hybridization capture-based approaches demonstrated better uniformity. All methods identified many of the same single-nucleotide variants, but each amplicon-based method missed variants detected by the other three methods and reported additional variants discordant with all three other technologies. Many of these potential false positives or negatives appear to result from limited coverage, low variant frequency, vicinity to read starts/ends, or the need for platform-specific variant calling algorithms. All methods demonstrated effective copy-number variant calling when evaluated against a single-nucleotide polymorphism array. This study illustrates some differences between whole-exome sequencing approaches, highlights the need for selecting appropriate variant calling based on capture method, and will aid laboratories in selecting their preferred approach.

Hum Mutat 36:903–914, 2015. Published 2015 Wiley Periodicals, Inc.*

One size
does NOT fit all

PDAC

Ovarian

Breast

Bladder

CRC

CCA

Lung

Other BTC

FUNDACIÓN JIMÉNEZ DÍAZ

MOLECULAR PROFILING IN BTC – FGFR2 fusions

Amplicon-based enrichment

B24-17957

INFORME DE RESULTADOS DEL ESTUDIO DE SECUENCIACIÓN MASIVA OBTENIDOS CON PANEL Oncomine™ Precision Assay (ThermoFisher Scientific)

1. ¿Es la muestra adecuada para el estudio de secuenciación masiva?

Sí.

2. Variantes detectadas:

a. Alteraciones relevantes a nivel de ADN:

i. Mutaciones puntuales e inserciones/delecciones (indels):

Gen Relevantes	Transcríto de referencia	Exón	ADN	Proteína	Frecuencia alélica
----------------	--------------------------	------	-----	----------	--------------------

ii. Variación en el número de copias (CNVs):

Gen Relevantes	Transcríto de referencia	Nº Copias	Interpretación
----------------	--------------------------	-----------	----------------

b. Alteraciones relevantes a nivel de ARN (Reordenamientos/fusiones):

Gen Relevantes	Transcríto de referencia	ID Fusión	Isoforma	Nº Lecturas
----------------	--------------------------	-----------	----------	-------------

c. Otras alteraciones a nivel de ADN:

i. Mutaciones puntuales e inserciones/delecciones (indels):

Gen	Transcríto de referencia	Exón	ADN	Proteína	Frecuencia alélica
-----	--------------------------	------	-----	----------	--------------------

ii. Variación en el número de copias (CNVs):

Gen	Transcríto de referencia	Nº Copias	Interpretación
CDKN2A		0	Pérdida

d. Otras alteraciones a nivel de ARN (Reordenamientos/fusiones):

Gen	Transcríto de referencia	ID Fusión	Isoforma	Nº Lecturas
-----	--------------------------	-----------	----------	-------------

Observaciones:

Hybrid capture method

Identificación de la muestra: B24-017957 A1

Molecular

Interpretación de Resultados

Perfil mutacional obtenido:

Variantes patogénicas y probablemente patogénicas:

Fusión Génica: NM_022970.3 (FGFR2):e17::NM_001258298.2(KIAA1598):e.8 (FGFR2 TRASLOCADO)

Pérdida en homocigosis de MTAP

Pérdida en homocigosis de CDKN2A

Pérdida en heterocigosis de BAP1

BAP1 NM_004656.4 Exón c.588G>A.(W196*) (VAF:8,31%)

CORRECCIÓN A FECHA 12/11/2025

Error detectado tras consulta con Servicio de Soporte OncoDNA en relación al gen MTAP. Este gen MTAP presenta una copia génica en lugar de ninguna. Por tanto, se debe considerar que la pérdida de MTAP es en heterocigosis y no en homocigosis como se reportó inicialmente. El caso debe considerarse como MTAP perdido en HETEROCIGOSIS.

Carga mutacional (Tumor mutational burden, TMB):

Baja carga mutacional: 3.3 Mut/Mb (mutaciones/megabase menor a 10)

Inestabilidad de microsatélites:

No se detecta inestabilidad de microsatélites: 22.39% (inestabilidad de microsatélites en menos de un 40% de los marcadores analizados)

HRD:

GS (Genomic Scar): 40.6 (HRD POSITIVO) (Un valor mayor a 37 confiere un estado HRD positivo)

MOLECULAR PROFILING IN BTC – FGFR2 fusions

Amplicon-based enrichment

B24-17957

INFORME DE RESULTADOS DEL ESTUDIO DE SECUENCIACIÓN MASIVA OBTENIDOS CON PANEL Oncomine™ Precision Assay (ThermoFisher Scientific)

1. ¿Es la muestra adecuada para el estudio de secuenciación masiva?

Sí.

2. Variantes detectadas:

a. Alteraciones relevantes a nivel de ADN:

i. Mutaciones puntuales e inserciones/delecciones (indels):

Gen Relevantes	Transcríto de referencia	Exón	ADN	Proteína	Frecuencia alélica
----------------	--------------------------	------	-----	----------	--------------------

ii. Variación en el número de copias (CNVs):

Gen Relevantes	Transcríto de referencia	Nº Copias	Interpretación
----------------	--------------------------	-----------	----------------

b. Alteraciones relevantes a nivel de ARN (Reordenamientos/fusiones):

Gen Relevantes	Transcríto de referencia	ID Fusión	Isoforma	Nº Lecturas
----------------	--------------------------	-----------	----------	-------------

c. Otras alteraciones a nivel de ADN:

i. Mutaciones puntuales e inserciones/delecciones (indels):

Gen	Transcríto de referencia	Exón	ADN	Proteína	Frecuencia alélica
-----	--------------------------	------	-----	----------	--------------------

ii. Variación en el número de copias (CNVs):

Gen	Transcríto Referencia	Nº Copias	Interpretación
CDKN2A		0	Pérdida

d. Otras alteraciones a nivel de ARN (Reordenamientos/fusiones):

Gen	Transcríto de referencia	ID Fusión	Isoforma	Nº Lecturas
-----	--------------------------	-----------	----------	-------------

Observaciones:

METODOLOGÍA Y ESPECIFICACIONES DEL PANEL

Caracterización molecular del tumor mediante estudio de secuenciación masiva con el panel Oncomine™ Precision Assay (ThermoFisher Scientific) utilizando el equipo Ion Torrent Genexus System. Los datos se analizan en el Torrent Suite mediante el programa Genexus Software v6.6.2.1. LISTA DE GENES INCLUIDOS EN EL PANEL Oncomine™ Precision Assay:

- Mutaciones puntuales e inserciones/delecciones (indels) en 45 genes (ADN): AKT1, AKT2, AKT3, ALKB, AR, ARID4, BRAF, CDK4, CDKN2A, CHEK2, CTNNB1, EGFR, ERBB2, ERBB3, ERBB4, ERK1, FGFR1, FGFR2, FGFR3, FGFR4, PIK3CA, PTEN, GNAQ, GNAS, HRAS, IDH1, IDH2, KIT, KRAS, MAP2K1, MAP2K2, MET, MTO1, NRAS, NTRK1, NTRK2, PDGFRA, PIK3CA, PTEN, RAF1, RET, ROS1, SMO, TP53.

- Variaciones en el nº de copias (CNVs) en 14 genes (ADN): ALKB, AR, CD274, CDKN2A, EGFR, ERBB2, ERBB3, FGFR1, FGFR2, FGFR3, KRAS, MET, PIK3CA, PTEN. El ensayo solo detecta pérdidas en los genes PTEN y CDKN2A; para el resto de genes se estudian amplificaciones focales.

- Reordenamientos /fusiones intergenéricas en 16 genes (ARN): ALKB, AR, BRAF, EGFR, ERK1, FGFR1, FGFR2, FGFR3, MET, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, RET, ROS1, RSP02, RSP03.

- Reordenamientos /fusiones intragenéricas en 3 genes: AR, EGFR y MET.

Hybrid capture method

Identificación de la muestra: B24-017957 A1

Molecular

Interpretación de Resultados

Perfil mutacional obtenido:

Variantes patogénicas y probablemente patogénicas:

Fusión Génica: NM_022970.3 (FGFR2):e17::NM_001258298.2(KIAA1598):e.8 (FGFR2 TRASLOCADO)

Pérdida en homocigosis de MTAP

Pérdida en homocigosis de CDKN2A

Pérdida en heterocigosis de BAP1

BAP1 NM_004656.4 Exón c.588G>Ap.(W196*) (VAF:8,31%)

CORRECCIÓN A FECHA 12/11/2025

Error detectado tras consulta con Servicio de Soporte OncoDNA en relación al gen MTAP. Este gen MTAP presenta una copia génica en lugar de ninguna. Por tanto, se debe considerar que la pérdida de MTAP es en heterocigosis y no en homocigosis como se reportó inicialmente. El caso debe considerarse como MTAP perdido en HETEROCIGOSIS.

Carga mutacional (Tumor mutational burden, TMB):

Baja carga mutacional: 3.3 Mut/Mb (mutaciones/megabase menor a 10)

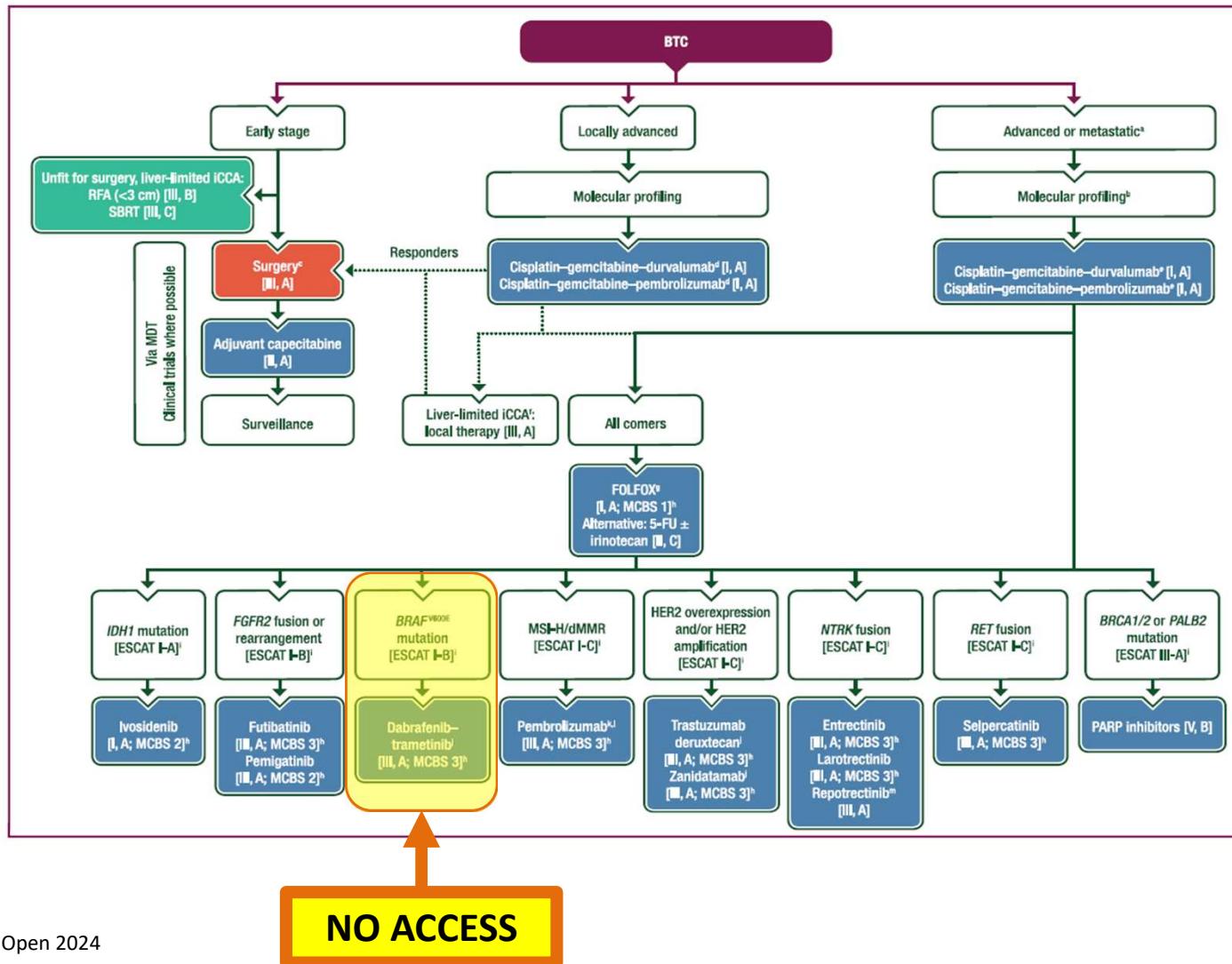
Inestabilidad de microsatélites:

No se detecta inestabilidad de microsatélites: 22.39% (inestabilidad de microsatélites en menos de un 40% de los marcadores analizados)

HRD:

GS (Genomic Scar): 40.6 (HRD POSITIVO) (Un valor mayor a 37 confiere un estado HRD positivo)

Molecular


Metodología

Determinación por secuenciación masiva dirigida estudios del estado mutacional de regiones específicas de 638 genes con OncoDEEP™ Kit DNA & RNA (CE-IVD) (OncoDNA, Gosselies, Bélgica) mediante Illumina NextSeq 500 (Illumina, San Diego, CA) a partir de 30-50 ng de ADN y ARN tumoral obtenido de muestras de tejido tumoral fijado en formal y embebido en parafina. El panel cubre las regiones exónicas y regiones hotspot de 638 genes, con gran relevancia en tumores sólidos, permitiendo identificar mutaciones puntuales, inserciones, delecciones, alteración en el número de copias, pérdidas de heterocigosidad y traslocaciones génicas, además de inestabilidad de microsatélites, carga mutacional (TMB) y HRD.

El análisis e interpretación de los resultados se realiza mediante el Software OncoKDM™ y posterior validación de los datos conforme a los criterios establecidos, considerando una cobertura media de las regiones de al menos 350x y reportando variantes con un límite de detección del 5%* para alteraciones puntuales. La técnica empleada presenta limitaciones inherentes al propio ensayo, incluyendo, de manera ocasional, baja cobertura de algunas regiones estudiadas. La clasificación e informe de los resultados obtenidos están basados en las guías de estandarización de la Asociación de Patología Molecular y el Colegio Americano de Patólogos (AMP y CAP) (Jennings et al. 2017), y la guía de clasificación de acciónabilidad clínica de variantes (ESCAT) de la Sociedad Europea de Oncología Médica (ESMO) (Mateo J, et al. 2018).

*Límite de detección y valor predictivo positivo superior al 99%. Estos límites de detección se establecen para muestras que presenten un valor de DV900 mayor a 49.5% y 30ng para DNA y DV200 mayor a 60% y 50ng para RNA con más de un 30% de porcentaje tumoral y como mínimo 20 millones de lecturas por muestra.

BTC – ESMO GUIDELINES eUpdate 2024 - SPANISH REALITY

Dabrafenib and trametinib: mBRAF V600E BTC

- Phase II study; n=43
- ORR 51% (95% CI 36-67) – investigator assessed
- ORR 47% (95% CI 31-62) – central review
- Duration of response: 9 months (95% CI 6-14)
- PFS: 9 months (95% CI 5-10)
- OS: 14 months (95% CI 10-33)

➤ Promising activity and manageable safety profile.

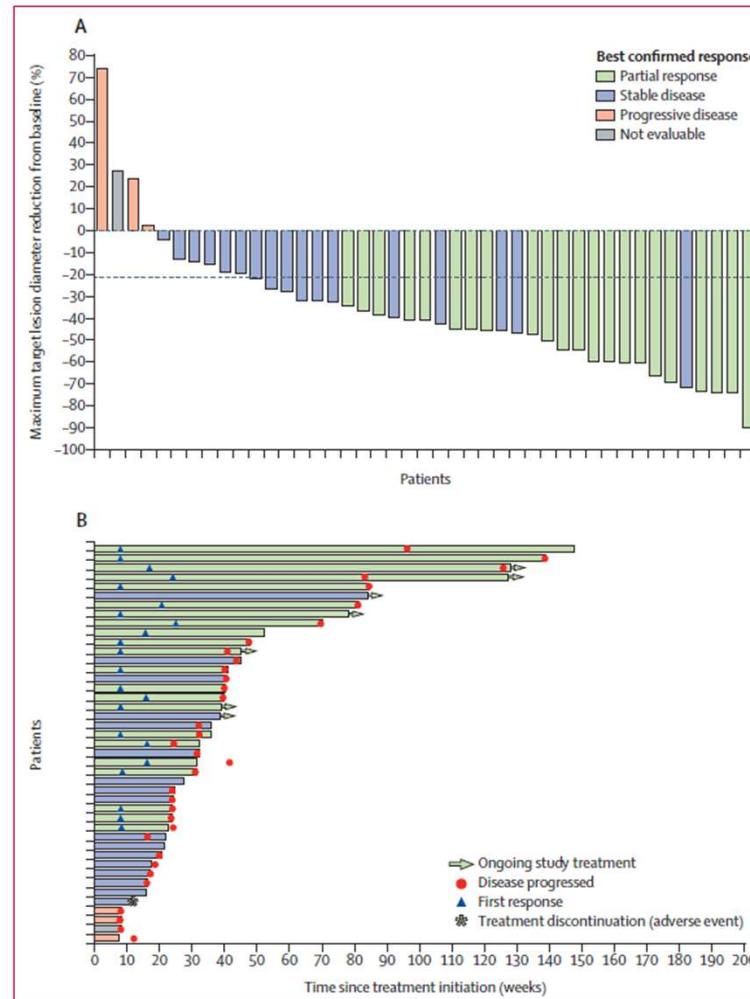


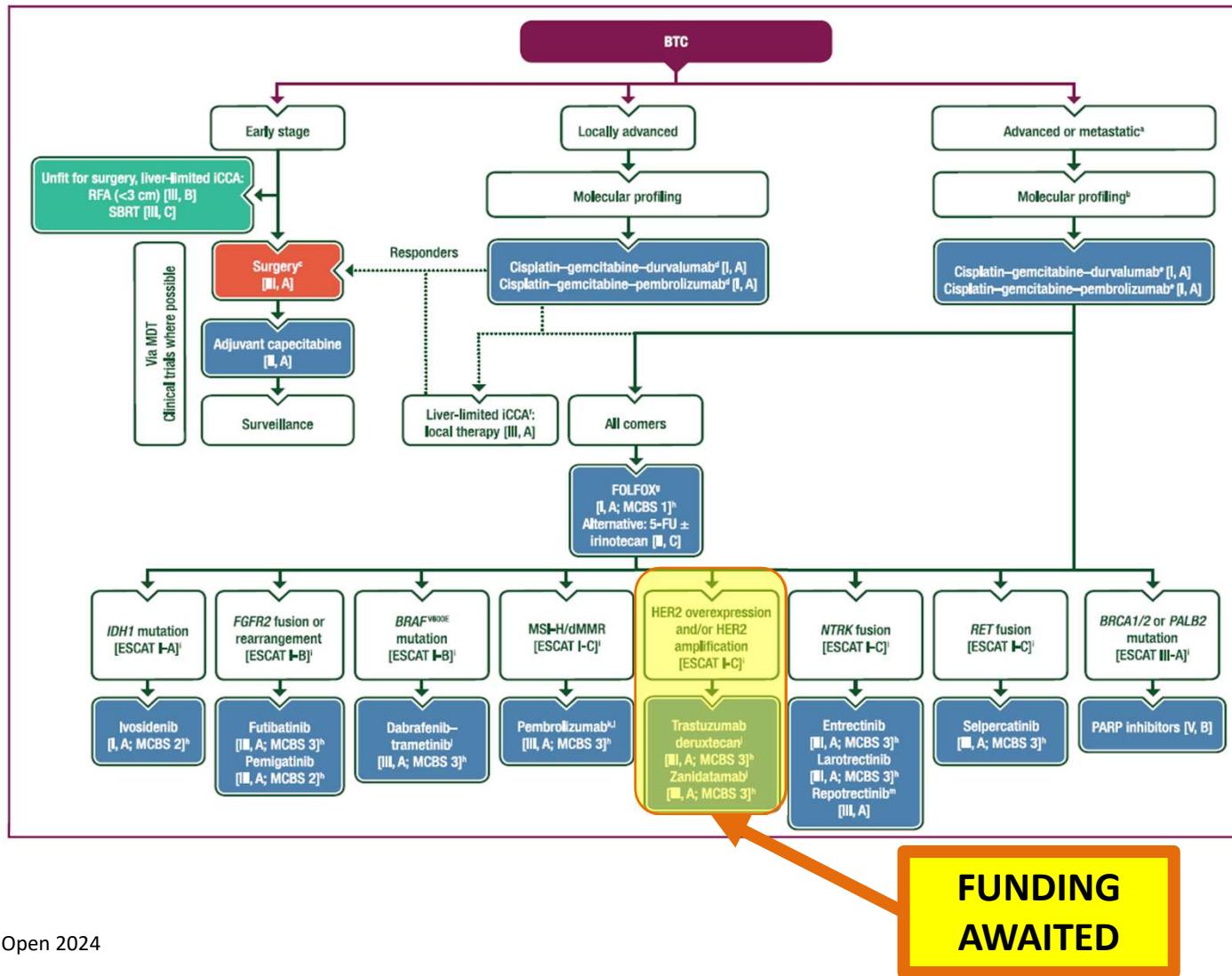
Figure 1: Change in target lesion diameters and treatment duration in the intention-to-treat evaluable population (n=43)

Subbiah et al, LancetOncol 2020

Dabrafenib and trametinib: mBRAF V600E BTC

FDA grants accelerated approval to dabrafenib in combination with trametinib for unresectable or metastatic solid tumors with BRAF V600E mutation

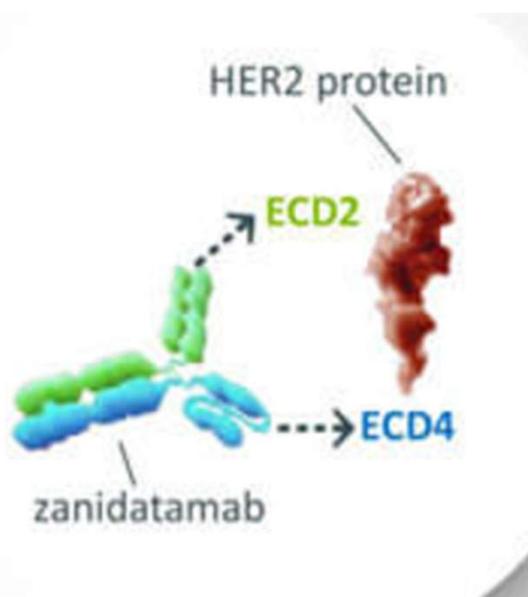
[!\[\]\(ae3fa106f2de1c6faa9877e80d357754_img.jpg\) Share](#) [!\[\]\(753084c766d39e7fefc812332e831cbf_img.jpg\) Tweet](#) [!\[\]\(2c9f17a2efbbc63c16cf6552227df80f_img.jpg\) LinkedIn](#) [!\[\]\(cc2448aef3587859249cb10504704b45_img.jpg\) Email](#) [!\[\]\(2efa12bc36b162faccbb7237c5c439da_img.jpg\) Print](#)


Tumour agnostic approval (FDA)....
BUT
NOT EMA approved...

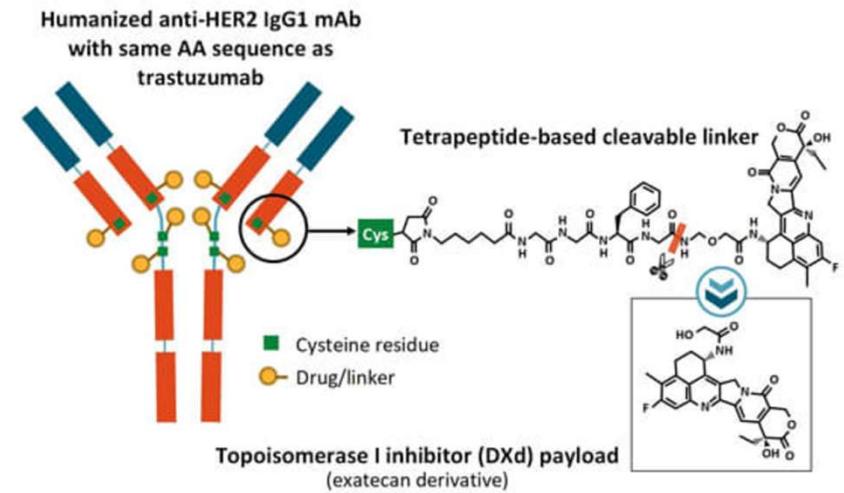
On June 22, 2022, the Food and Drug Administration granted accelerated approval to dabrafenib (Tafinlar, Novartis) in combination with trametinib (Mekinist, Novartis) for the treatment of adult and pediatric patients ≥ 6 years of age with unresectable or metastatic solid tumors with BRAF V600E mutation who have progressed following prior treatment and have no satisfactory alternative treatment options. Dabrafenib in combination with trametinib is not indicated for patients with colorectal cancer because of

Content current as of:
06/23/2022

Regulated Product(s)
Drugs


BTC – ESMO GUIDELINES eUpdate 2024 - SPANISH REALITY

Targeting HER-2 – novel approaches


Zanidatamab

Zanidatamab: antibody directed against two non-overlapping domains of HER2

Trastuzumab deruxtecan (T-DXd; DS-8201)

T-DXd: antibody-drug conjugate → humanized monoclonal anti-HER2 antibody + topoisomerase I inhibitor

Targeting HER-2 – novel approaches

Zanidatamab

FDA
EMA

Zanidatamab: antibody directed against two non-overlapping domains of HER2

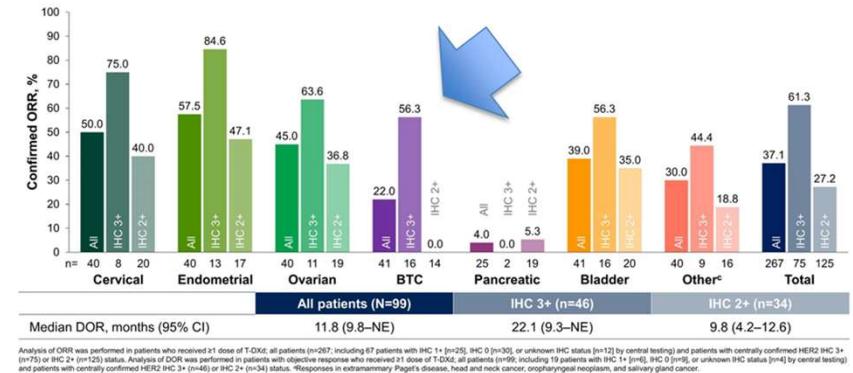
Table 2. Disease Response in Patients With HER2-Positive BTC (Cohort 1)

Disease Response Endpoints ^a	n=80
cORR, ^b n (%) [95% CI]	33 (41.3) [30.4, 52.8]
Complete response, n (%)	2 (2.5)
Partial response, n (%)	31 (38.8)
Stable disease, n (%)	22 (27.5)
Progressive disease, n (%)	24 (30.0)
DCR, ^c n (%) [95% CI]	55 (68.8) [57.4, 78.7]
CBR, ^d n (%) [95% CI]	38 (47.5) [36.2, 59.0]

^aEfficacy analysis (i.e., all patients in Cohort 1 who received any dose of zanidatamab) per ICR. ^bOne patient was not evaluable. ^cBest overall response of stable disease or confirmed complete response or partial response. ^dStable disease >24 weeks or confirmed best overall response of complete response or partial response.

BTC, biliary tract cancer; C, confidence interval; CBR, clinical benefit rate; cORR, confirmed objective response rate; DCR, disease control rate;

HER2, human epidermal growth factor receptor 2; ICR, independent central review.


- With additional follow-up, the cORR (41.3%) and the disease control rate (68.8%) were maintained
 - One additional patient achieved a complete response (n=2; 2.5%)
 - Although the trial was not designed to detect treatment effects by HER2 status, in a pre-planned subgroup analysis of cORR by HER2 expression, responses were observed in patients with IHC 3+ tumors (cORR: 51.6%) and IHC 2+ tumors (cORR: 5.6%)

Trastuzumab deruxtecan (T-DXd; DS-8201)

FDA
(Tumour Agnostic)

T-DXd: antibody-drug conjugate → humanized monoclonal anti-HER2 antibody + topoisomerase I inhibitor

Objective Response Rate by HER2 status

Targeting HER-2 – novel approaches

Zanidatamab

FDA
EMA

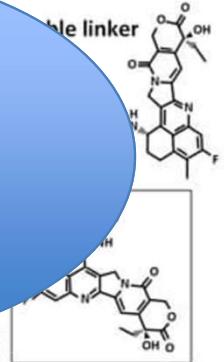
Zanidatamab: antibody directed against two non-overlapping domains of HER2

FDA and EMA approved but funding decision pending in Spain

Early access programme available (hospital-funded)

Trastuzumab deruxtecan (T-DXd; DS-8201)

FDA
(Tumour Agnostic)


T-DXd: antibody-drug conjugate → humanized monoclonal anti-HER2 antibody + topoisomerase I inhibitor

Humanized anti-HER2 IgG1 mAb
with same AA sequence as
trastuzumab

Tumour agnostic approval (FDA)....
BUT
NOT EMA approved...

Topoisomerase I inhibitor (DXd) payload
(exatecan derivative)

IIS
FJD
INSTITUTO DE INVESTIGACIONES
SANTITARIA
FUNDACION JIMENEZ DIAZ

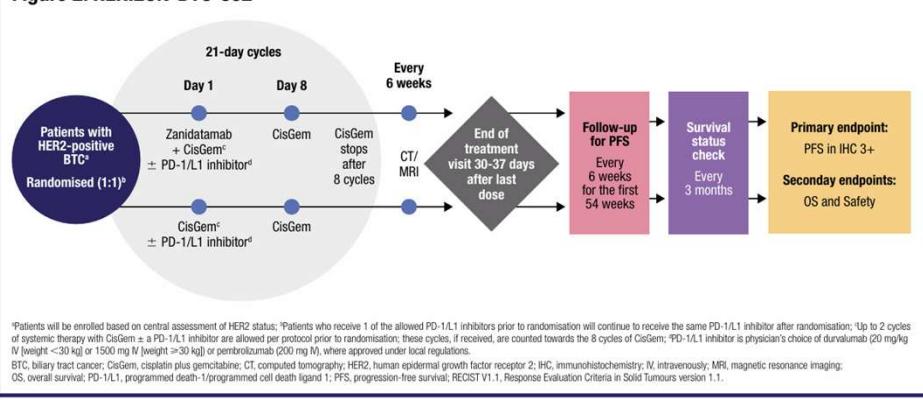
UAM
Universidad Autónoma
de Madrid

TAKE HOME MESSAGES

- **Early stage**
 - Adjuvant treatment not the best
 - Patients are diagnosed late- research for early diagnosis is a MUST
- **Advanced disease – 1st line**
 - Molecular testing: IHC (HEr2), NGS (others) ASAP in advanced disease; good use of tissue
 - CisGem + durvalumab or pembrolizmunab is SOC – should be accessible to all
- **Advanced disease: subsequent lines**
 - Targeted preferable to chemotherapy if targetable alterations are identified
 - FOLFOX / Irinotecan-based modest activity
 - Access limited for some therapies
 - Adequate testing for specific targets – fFGFR2, MTAP?
 - Clinical trials can be as good as approved therapies

TAKE HOME MESSAGES

- **Early stage**
 - Adjuvant treatment not the best
 - Patients are diagnosed late- research for early diagnosis is a MUST
- **Advanced disease – 1st line**
 - Molecular testing: IHC (HEr2), NGS (others) ASAP in advanced disease; good use of tissue
 - CisGem + durvalumab or pembrolizmunab is SOC – should be accessible to all
- **Advanced disease: subsequent lines**
 - Targeted preferable to chemotherapy if targetable alterations are identified
 - FOLFOX / Irinotecan-based modest activity
 - Access limited for some therapies
 - Adequate testing for specific targets – fFGFR2, MTAP?
 - Clinical trials can be as good as approved therapies →

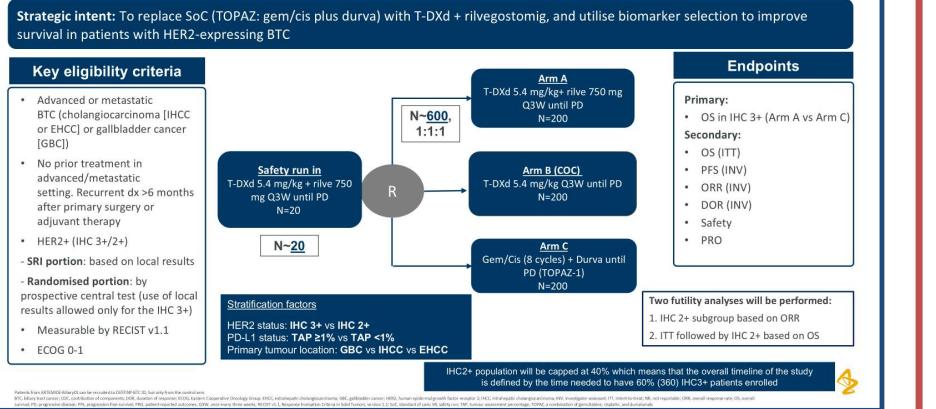


Targeting HER-2 – novel approaches – ongoing trials

Zanidatamab

Zanidatamab: antibody directed against two non-overlapping domains of HER2

Figure 2. HERIZON-BTC-302

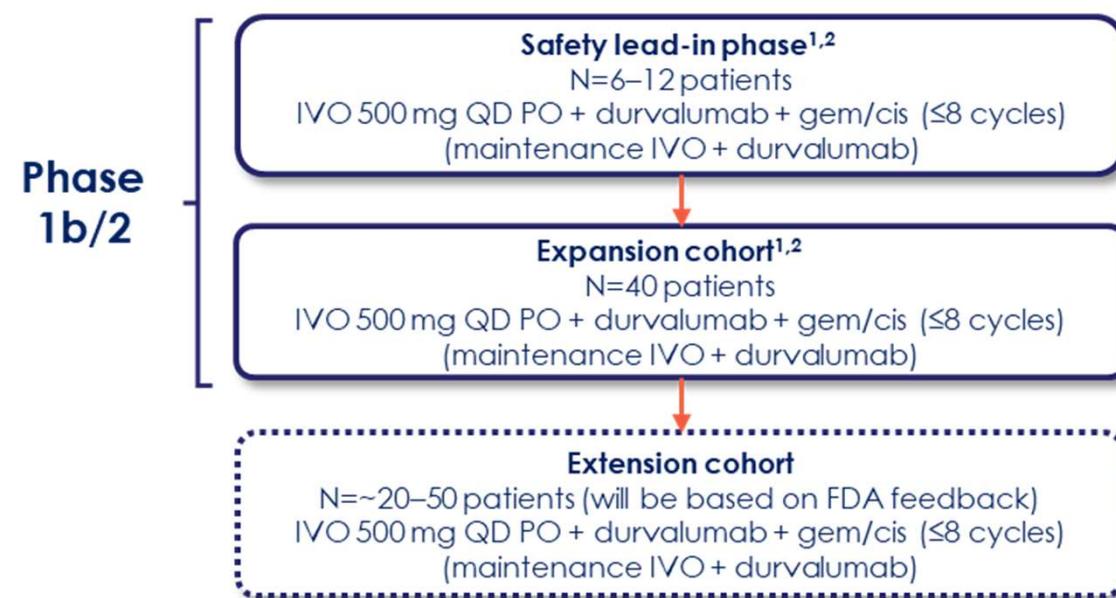


Macarulla et al, ESMO 2024;

Trastuzumab deruxtecan (T-DXd; DS-8201)

T-DXd: antibody-drug conjugate → humanized monoclonal anti-HER2 antibody + topoisomerase I inhibitor

DESTINY-BTC01: Phase 3 study of T-DXd + rilvecostomig versus SoC for HER2-expressing biliary cancer (1L)



Ivosidenib in the first-line setting – ongoing trial

A Phase 1b/2, safety lead-in and dose expansion, open-label, multicentre trial investigating the safety, tolerability, and preliminary activity of IVO in combination with durvalumab and gemcitabine/cisplatin as 1L therapy in participants with locally advanced, unresectable or metastatic CCA with an *IDH1* mutation

Ongoing clinical trial

Safety (n=6) completed

FGFR inhibitors in CCA: Futibatinib - ongoing

Study of Futibatinib in Patients With Advanced Cholangiocarcinoma With FGFR2 Fusion or Rearrangement (FOENIX-CCA4)

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. [Know the risks and potential benefits](#) of clinical studies and talk to your health care provider before participating. Read our [disclaimer](#) for details.

ClinicalTrials.gov Identifier: NCT05727176

Recruitment Status [i](#) : Recruiting
First Posted [i](#) : February 14, 2023
Last Update Posted [i](#) : June 15, 2023
See [Contacts and Locations](#)

Go to [▼](#)

Study Description

Brief Summary:

This is an open-label, multinational, randomized Phase 2 study confirming the clinical benefit of 20 mg futibatinib and evaluating the safety and efficacy of 16 mg futibatinib in previously treated CCA harboring FGFR2 gene fusions and other rearrangements.

Sponsor:

Taiho Oncology, Inc.

Information provided by (Responsible Party):

Taiho Oncology, Inc.

Condition or disease i	Intervention/treatment i	Phase i
Advanced Cholangiocarcinoma	Drug: TAS-120	Phase 2
FGFR2 Fusions		
Gene Rearrangement		

[Expanded Access](#) [i](#). An investigational treatment associated with this study has been [approved](#) for sale to the public. [More info ...](#)

Detailed Description:

This is an open-label, multinational, randomized Phase 2 study confirming the clinical benefit of 20 mg futibatinib and evaluating the safety and efficacy of 16 mg futibatinib in previously treated CCA harboring FGFR2 gene fusions and other rearrangements. Eligible patients will be randomized on a 1:1 basis to the following study arms:

- Patients will receive futibatinib at an oral dose of 16 mg, administered daily (QD) on every day of a 21-day cycle.
- Patients will receive futibatinib at an oral dose of 20 mg, administered daily (QD) on every day of a 21-day cycle.

Patients may continue to receive continuous futibatinib until documentation of progressive disease (PD) per RECIST 1.1, or until other withdrawal criteria are met, whichever comes first.

Go to [▼](#)

Study Design

Primary end-point: ORR

Study Type [i](#) : Interventional (Clinical Trial)
Estimated Enrollment [i](#) : 120 participants
Allocation: Randomized
Intervention Model: Parallel Assignment
Masking: None (Open Label)
Primary Purpose: Treatment
Official Title: Phase 2 Study of **Futibatinib** 20 mg and 16 mg in Patients With Advanced Cholangiocarcinoma With FGFR2 Fusions or Rearrangements
Actual Study Start Date [i](#) : May 12, 2023
Estimated Primary Completion Date [i](#) : June 2025
Estimated Study Completion Date [i](#) : June 2026

FGFR inhibitors in CCA: Tinengotinib - ongoing

➤ FIRST-308 (phase III)

Randomised phase III
TT420 vs physician choice after progression
to prior iFGFR

Drug Candidate	Target/ Mechanism (MOA)	Indication	Mono/ Combo	Status				Commercial rights	Partner
				Preclinical	IND Enabling	Phase I	Phase II		
TT-00420 ★	Unique MTK(FGFR mut, Aurora A/B, VEGFRs, JAK 1/2, CSF1R)	CCA ⁽¹⁾ FGFR2 acquired resistance	Mono	██████████	██████████	██████████	██████████	Global	N/A
		CCA ⁽¹⁾ FGFR2 primary resistance	Mono	██████████	██████████	██████████	██████████		
		CCA ⁽¹⁾ Non-FGFR	Mono	██████████	██████████	██████████	██████████		
	TNBC ⁽²⁾	Monotherapy	Mono	██████████	██████████	██████████	██████████	Global	N/A
		Combo with Chemo	Combo with Chemo	██████████	██████████	██████████	██████████		
	BTC	Combo with PD-L1	Combo with PD-L1	██████████	██████████	██████████	██████████	Global	Roche Collaboration
Solid tumors ⁽⁷⁾		Mono	██████████	██████████	██████████	██████████	██████████	Global	N/A

ClinicalTrials.gov

Study of Tinengotinib VS. Physician's Choice a Treatment of Subjects With FGFR-altered in Cholangiocarcinoma (FIRST-308)

ClinicalTrials.gov Identifier: NCT05948475

Recruitment Status: Not yet recruiting

First Posted: July 17, 2023

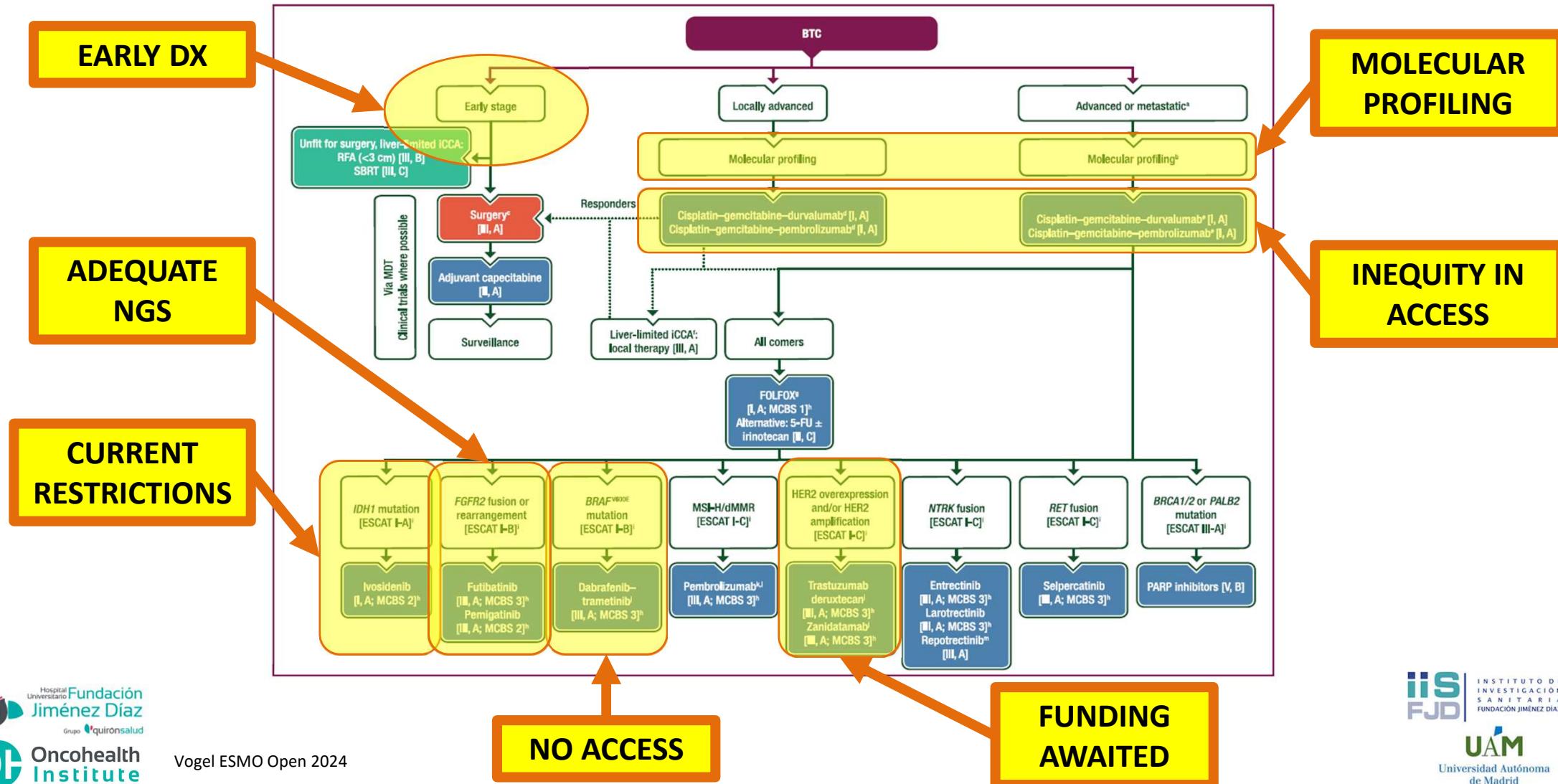
Last Update Posted: July 17, 2023

See [Contacts and Locations](#)

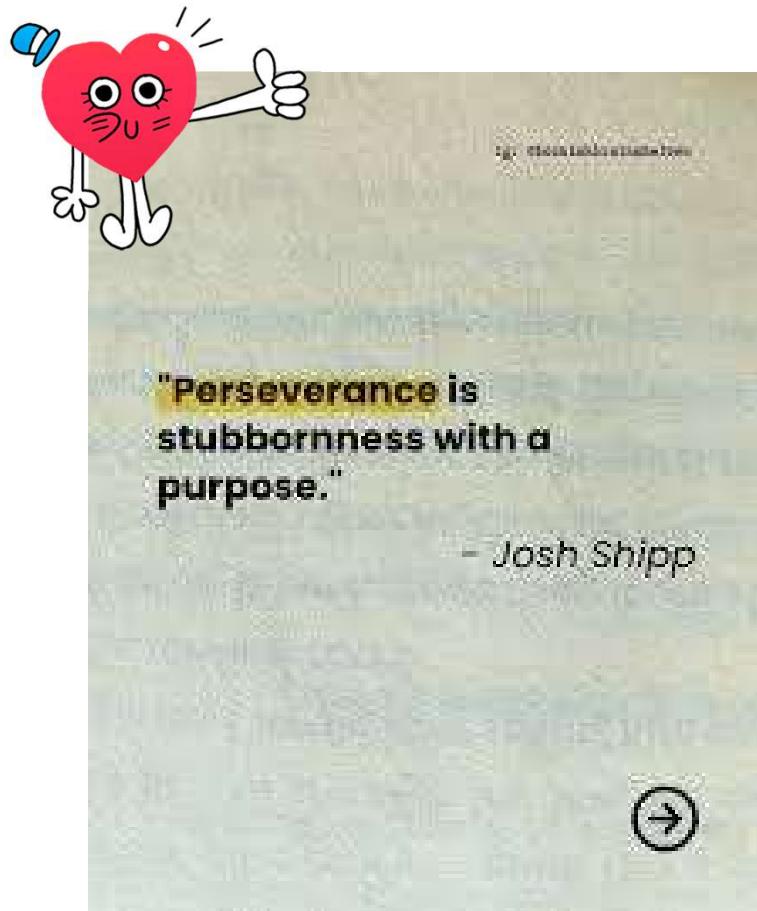
Study Summary: This study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits before participating. Read our [Disclaimer](#) for more information.

Condition or disease: Cholangiocarcinoma

Intervention/treatment: Drug: Tinengotinib 8 mg; Drug: Tinengotinib 10 mg; Drug: Physician's Choice


Phase: Phase 3

Detailed Description: Approximately 200 subjects will be enrolled. Eligible subjects will be randomized in a 2:2 ratio to receive tinengotinib 8 mg QD, tinengotinib 10 mg QD or Physician's Choice in Part A, and eligible subjects will be randomized in a 2:1 ratio to receive the recommended Part B dose or selected dose or Physician's Choice in Part B.


Study Design: Study Type: Interventional (Clinical Trial); Estimated Enrollment: 200 participants; Allocation: Randomized; Intervention Model: Parallel Assignment; Masking: None (Open Label); Primary Purpose: Treatment; Official Title: A Phase III, Randomized, Controlled, Global Multicenter Study to Evaluate the Efficacy and Safety of Oral Tinengotinib VS Physician's Choice in Subjects With FGFR-altered, Chemotherapy- and FGFR Inhibitor-Relapsed Cholangiocarcinoma

Estimated Study Start Date: September 2023; Estimated Primary Completion Date: May 2026; Estimated Study Completion Date: August 2026

BTC – ESMO GUIDELINES eUpdate 2024 - SPANISH REALITY

We will make it work

**"Perseverance is
stubbornness with a
purpose."**

– Josh Shipp

"Our patients deserve better"

Dr John Bridgewater

¿Y yo, qué puedo hacer?

ATUVIBI

¿Y yo, qué puedo hacer?

Join ENS-CCA

[HOME](#) / [ABOUT US](#) / [CONSTITUTION](#) / [NEWS](#) / [GROUPS](#) / [CONTACTS](#)

ENS-CCA NETWORK MEMBERS

AUSTRIA

Medical University of Vienna (Vienna)

BELGIUM

Jules Bordet Cancer Institute (Brussels)

DENMARK

University of Copenhagen (Copenhagen)

FRANCE

*Saint-Antoine Centre (Paris)
Inserm NuMeCan (Rennes)
Lyonnais Center for Digestive Surgery (Lyon)*

GERMANY

*University Hospital of Würzburg (Würzburg)
Institute of Pathology (Greifswald)
Saarland University Medical Center (Homburg)
Institute of Pathology - Heidelberg University Hospital (Heidelberg)
Heidelberg University (Heidelberg)
Institute for Pathology - University of Regensburg (Regensburg)
Essen University Hospital (Essen)
RWTH Aachen University (Aachen)
Hannover Medical School (Hannover)
University Medical Centre Hamburg-Eppendorf (Hamburg)
University Hospital Bonn (Bonn)
University Hospital Schleswig-Holstein (Lübeck)*

ITALY

*Sapienza University of Rome (Rome)
National Cancer Institute Regina Elena (Rome)
Università Politecnica delle Marche - Ospedali Riuniti University Hospital (Ancona)
University of Milano-Bicocca (Milano)
Humanitas Research Hospital (Milano)
University of Milano (Milano)
University of Florence (Florence)
University of Padua (Padua)
University of Sassari (Sassari)
University of Bologna (Bologna)
National Institute of Gastroenterology 'S. De Bellis' Research Hospital (Castellana Grotte)*

THE NETHERLANDS

*University of Maastricht (Maastricht)/University of Aachen (Aachen)
Erasmus MC Hospital (Rotterdam)
Academic Medical Center (Amsterdam)
Radboud University Nijmegen Medical Centre (Nijmegen)*

LITHUANIA

Lithuanian University of Health Science (Kaunas)

NORWAY

*Norwegian PSC Research Center (Oslo)
Norwegian Radium Hospital (Oslo)*

POLAND

*University of Warsaw (Warsaw)
Teaching Hospital No 1 (Rzeszow)*

PORTUGAL

University of Lisbon (Lisbon)

SPAIN

*Biomedicina Health Research Institute - Donostia University Hospital (San Sebastian)
University of Salamanca - HEVEPHARM (Salamanca)
Centre for Applied Medical Research (CIMA) - Clínica Universidad de Navarra (Pamplona)
"12 de Octubre" University Hospital (Madrid)
Hospital Universitario Fundación Jiménez Díaz (Madrid)
August Pi i Sunyer Biomedical Research Institute - Clinic University Hospital (Barcelona)
Biotecnología Baskina Health Research Institute (Barakaldo)
Ability Pharma*

SWEDEN

*Karolinska Institutet (Karolinska)
Sahlgrenska University Hospital (Göteborg)*

SWITZERLAND

Zurich University Hospital (Zurich)

UNITED KINGDOM

*University of Edinburgh (Edinburgh)
University of Glasgow - Beatson West of Scotland Cancer Centre (Glasgow)
University College London Hospital (London)
The Christie NHS Foundation Trust (Manchester)
Imperial College Healthcare NHS Trust - Imperial College London (London)
Queen's Medical Centre - University of Nottingham (Nottingham)
University of Liverpool (Liverpool)*

¿Y yo, qué puedo hacer?

Join our COST-Action: Precision BTC

COST Actions ▾ Funding ▾ COST Academy

About ▾

SEARCH

e-COST

MENU

CA22125 - Precision medicine in biliary tract cancer (Precision-BTC-Network)

Downloads

Working Groups

Number	Title	Leader
1	Identification of epidemiological heterogeneity in Europe to apply precision prevention	Dr Vincenzo CARDINALE ▾
2	Personalised early detection of BTC	Dr Pedro RODRIGUES ▾
3	Personalisation of treatment for patients with BTC	Dr Anna SABOROWSKI ▾
4	Patient-centric support management	Prof Ana LLEO ▾
5	Artificial intelligence	Prof Jesper B ANDERSEN ▾
6	Drug development using preclinical models	Dr Monique VERSTEGEN ▾

WG	Year	Deliverables
WG1	Y1	✓ Establishing a pan-European registry for patients with all subtypes of BTC
	Y2-4	✓ Publications derived from data analyses from the pan-European registry database of BTC
	Y4	✓ Surveillance guidelines in patients at risk of developing BTC
WG2	Y1	✓ Guidelines on SOPs and DQM for collection and storage of BTC biological sample
	Y2-4	✓ Scientific publications on the diagnostic performance of different types of biomarkers in BTC
	Y4	✓ Scientific publication on the association of based-image biomarkers and histomorphology in biliary cancers
	Y4	✓ Publication of a Consensus on MRI in BTC
WG3	Y1	✓ Systematic review on the gaps of delivering precision oncology in biliary cancers
	Y2	✓ Publication of a retrospective analysis of the clinical outcome of biliary cancers, including GBC and AC
	Y3-4	✓ Publication of the optimization of biomarker development for patient stratification and development of novel strategies for personalised treatment in BTC
WG4	Y1-2	✓ Publication derived from surveys to stakeholders about specific needs in personalized management of patients with BTC
	Y1,3	✓ Patient education sheets and videos in different languages with useful information for patients/caregivers (disease, treatments and their potential adverse events, etc)
	Y4	✓ Publication of oncology nursing care in BTC patients
WG5	Y1-2	✓ Review on challenges of artificial intelligence to assess the reliability of models, provide clinical products and in holistic data integration
	Y3-4	✓ Scientific publication on the association of artificial intelligence based-image biomarkers, histomorphology and genomic data in BTC
WG6	Y1	✓ Review on challenges for the development of novel therapeutic strategies in BTC
	Y2-4	✓ Scientific publication on preclinical models developed for the application of drug discovery and drug validation and developing novel compounds to be taken into clinical experimentation
	Y3	✓ Proceedings from an academia-pharma interaction
All WGs	Y1-4	✓ Material and reports of training schools and bi-annual meeting
	Y2-4	✓ Publication of results of mentoring program and recordings of mentorship lectures available online

<https://www.cost.eu/actions/CA22125/>

Thank you for your attention

Angela.Lamarca@quironsalud.es

@DrAngelaLamarca

Thank you GI Oncology TEAM FJD

Medical Oncology Consultants:

Dr Lamarca, Dr Fuentes, Dr Ruiz, Dr Rosero

Research Fellow: Dr Gonzalez

PhD Students: Dr Martirena, Dr Fernandez

Research Nurses and Technicians: Sergio Galan, Carmen Candau, David Alonso

Study Coordinators: Berta Lopez, David Garcia

Data Entry: Leticia Sanchez, Paola Krystel