

Selección de pacientes para tratamiento adyuvante en cáncer de colon: ¿es posible ir más allá de las variables clínicas?

Julia Alcaide García

Hospital Regional Universitario de Málaga

Hospital Regional
Universitario
de Málaga

UNIDAD DE INVESTIGACIÓN
ONCOLOGÍA MÉDICA
HOSPITAL REGIONAL
UNIVERSITARIO DE MÁLAGA

Disclosure information

- Employment: None.
- Consultant or Advisory Role: None.
- Stock Ownership: None.
- Research Funding: None.
- Speaking: Merck, Amgen, Servier, Pierre-Fabre.
- Grant support: None.
- Other (Congress support): Merck, Amgen, MSD, Servier, Takeda, Sanofi, Roche.

Agenda

Agenda

1

**Signatures
KRAS/BRAF
Immunoscore**

Agenda

1

**Signatures
KRAS/BRAF
Immunoscore**

2

**Microsatellite instability
(MSI)**

Agenda

1

**Signatures
KRAS/BRAF
Immunoscore**

2

**Microsatellite instability
(MSI)**

3

**Circulating tumour DNA
(ctDNA)**

Agenda

1

**Signatures
KRAS/BRAF
Immunoscore**

2

**Microsatellite instability
(MSI)**

3

**Circulating tumour DNA
(ctDNA)**

4

PIK3CA

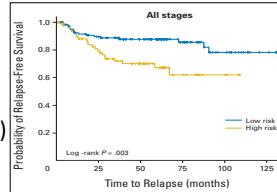
1. Gene expresión signatures, KRAS/BRAF, immunoscore

SEOM:

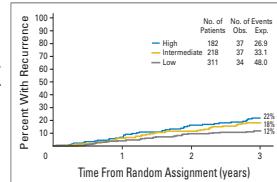
(Pericay 2024)

Not recommended for routine practice

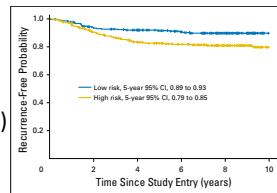
ESMO:


(Argiles 2020)

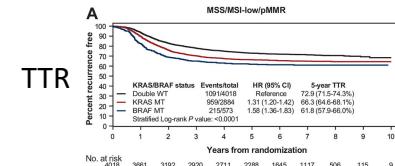
Not recommended for routine practice


Could be considered

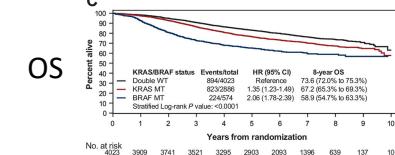
Signatures


Coloprint
(Salazar, JCO 2011)

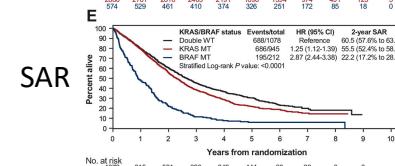
Oncotype DX
(Gray, JCO 2011)



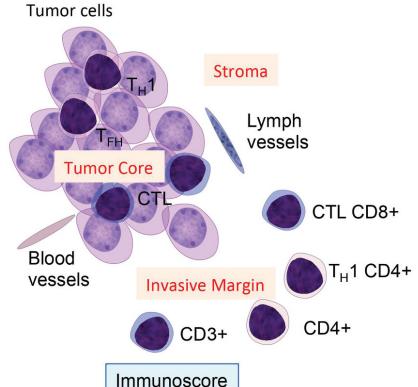
GeneFx Colon
(Niedzwiecki, JCO 2016)



KRAS and BRAF


TTR

OS



SAR

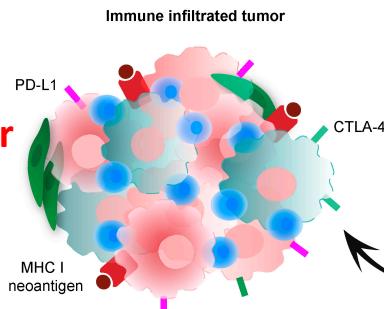
Taieb, Ann Oncol 2023

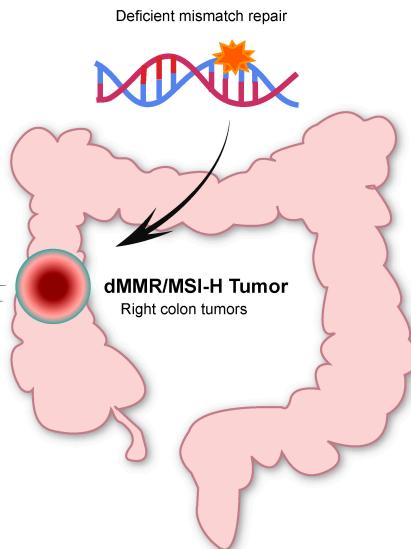
Immunoscore

CD3+, CD8+ cells in the tumor and at the invasive margin
Full slide quantification with the Immunoscore software

Lanzi, Oncoimmunology 2020

Mlecnik, J Clin Oncol 2020


Pagés, Ann Oncol 2020


2. Microsatellite instability (MSI)

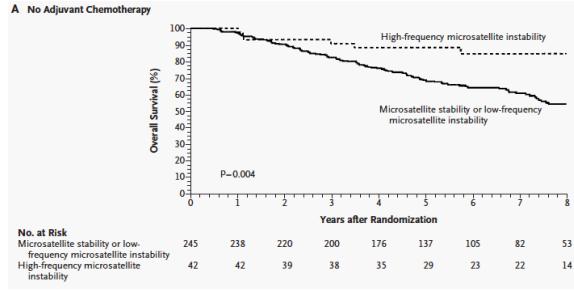
dMMR/MSI-H: hypermutated tumors

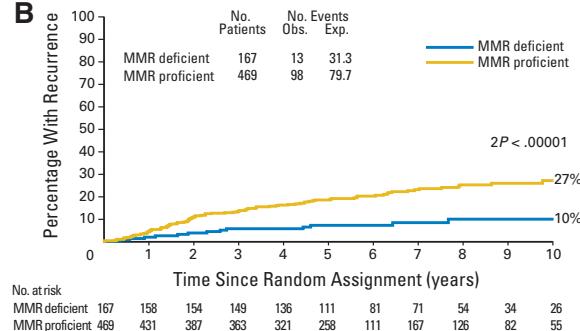
Immunogenic tumor microenvironment

- Mostly sporadic (MLH1 promoter meth).
- Right-sided.
- Mucinous.
- Poorly differentiated.
- BRAF mutations (1/3).

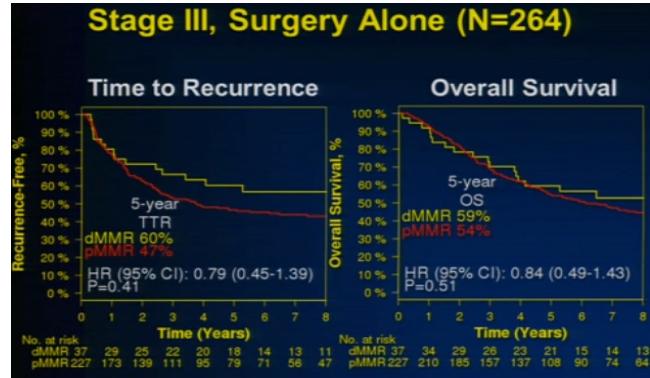
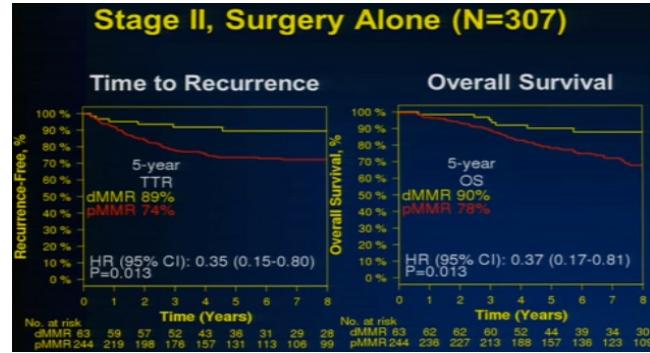
↑
TMB
Frameshift mutations
BRAF V600E mutation
CMS1 subtype

Hypermutated:
10-100x somatic
mutations

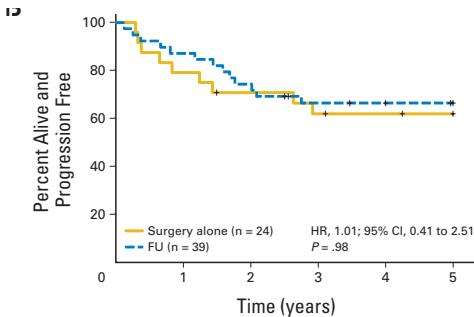
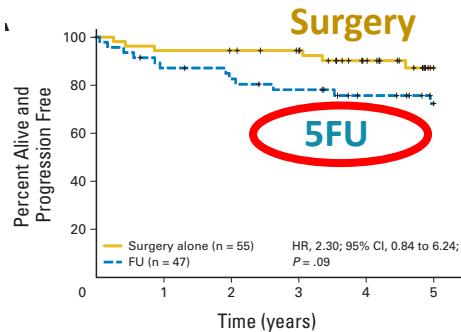

Large amounts of
neoantigens 10-
50x

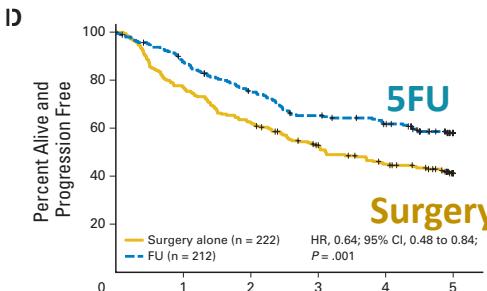
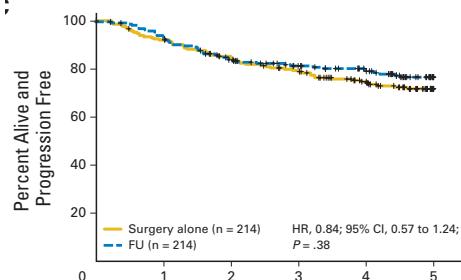

Stage II: 20%
Stage III: 12%
Stage IV: 4%

Untreated MSI patients have a better prognosis than MSS, with a trend toward stronger effect in stage II



Stages II and III (5 trials)

Stage II (QUASAR)



Ribic et al, N Engl J Med 2003
Hutchins et al, J Clin Oncol 2011



Sargent et al, ASCO 2014

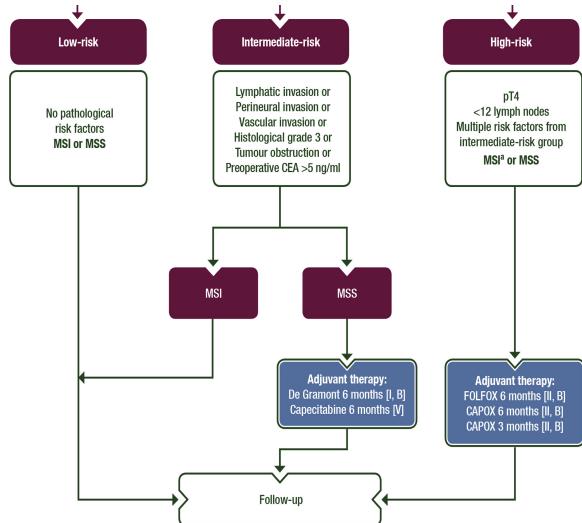
MSI do not seem to benefit from adjuvant FP, even a suggestion of harm in OS (5 trials of adj FU vs observation)

dMMR

pMMR

Stage II

Stage III


Sargent et al, J Clin Oncol 2010

Stage II

IMS

ESMO

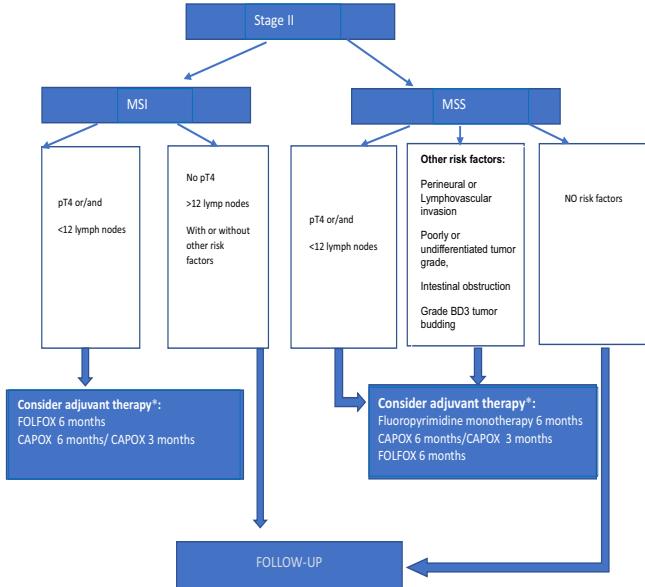
Argilés et al, Ann Oncol 2020

ASCO

Baxter et al, J Clin Oncol 2022

MSS: Adj CT should be offered to IIB and IIC (T4).

May be offered to IIA with high-risk factors: <12 In, PNI, LVI, G3-4, obstruction, perforation, BD3 tumor budding (≥ 10 buds)

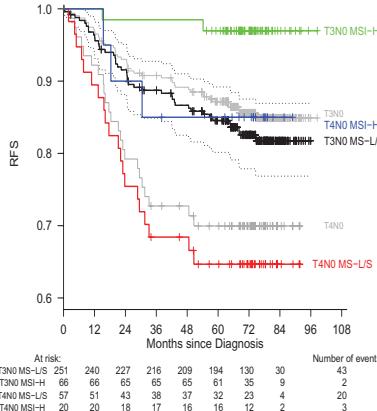

Nº of risk factors should be considered.

Insufficient evidence to routinely recommend oxali to high-risk MSS.

MSI and T4/other high-risk features (exception: G3): Oxaliplatin.

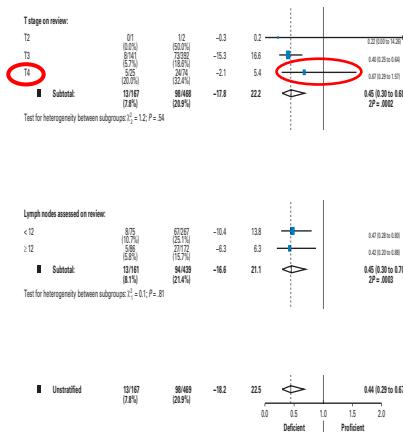
SEOM

Pericay et al, Clin Transl Oncol 2024



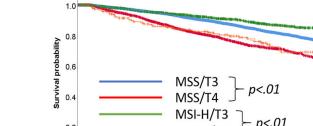
*Individualize according to age and comorbidities

Which is the strongest factor in stage II? MSI vs T4


PETACC3

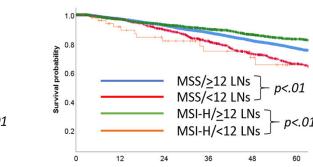
Roth, J Natl Cancer Inst 2012

QUASAR


Hutchins, J Clin Oncol 2011

NCDB

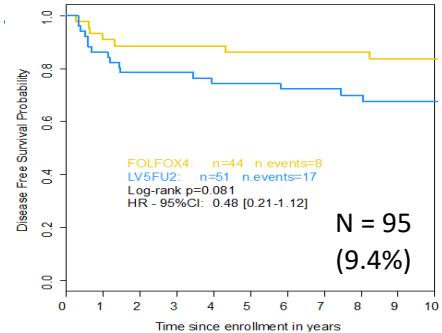
Cavallaro, Dis Colon Rectum 2021


D. Tumor stage

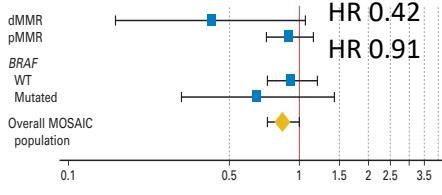
No. at Risk

No. at Risk	MSS/T3	MSS/T4	MSI-H/T3	MSI-H/T4
MSS/T3	12904	10979	8859	6323
MSS/T4	2173	1811	1370	895
MSI-H/T3	1466	1239	1039	780
MSI-H/T4	243	196	154	110
	4132	311	320	72
	2382			36

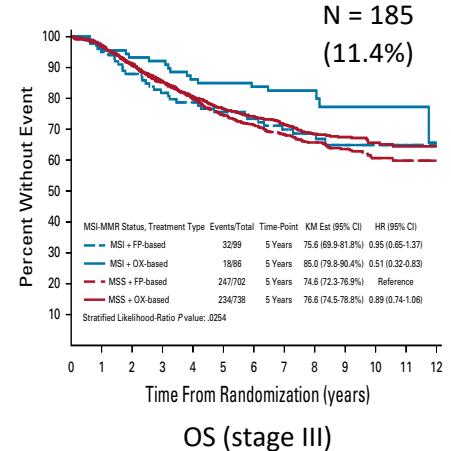
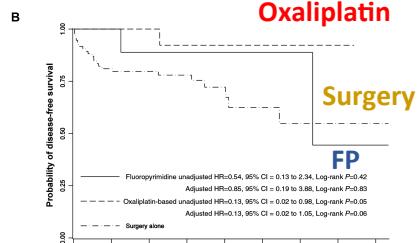
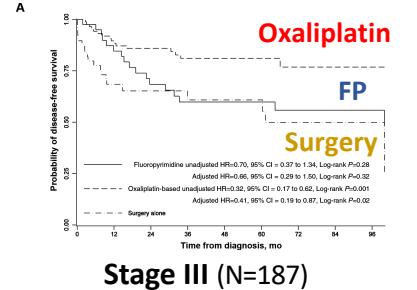
F. Lymph node yield


No. at Risk

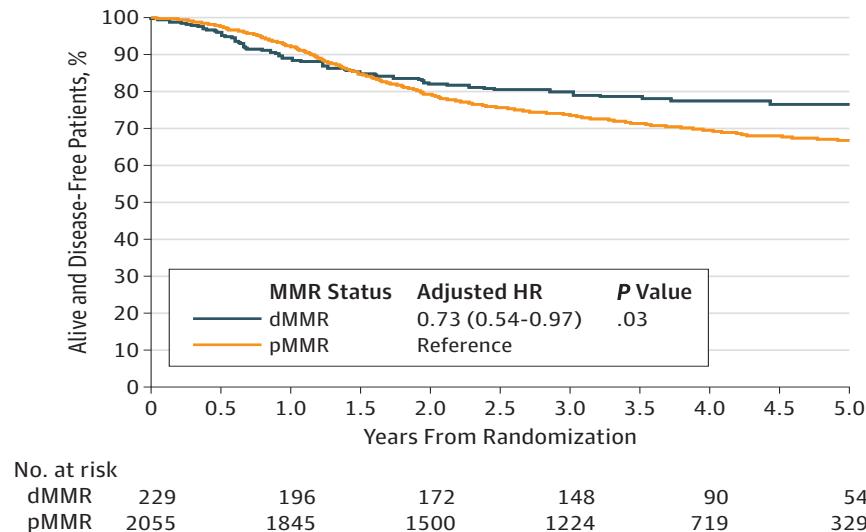
No. at Risk	MSS/≥12 LNs	MSS/<12 LNs	MSI-H/≥12 LNs	MSI-H/<12 LNs
MSS/≥12 LNs	14147	11994	9583	6749
MSS/<12 LNs	930	796	646	469
MSI-H/≥12 LNs	1655	1396	1162	869
MSI-H/<12 LNs	54	39	31	21
	4401	310	591	15
	2498			6


Table 5. Univariable Analysis for Time to Recurrence According to MMR Status

Radiological Feature	pMMR		dMMR	
	Hazard ratio (95% CI) ^c	P value ^c	Hazard ratio (95% CI) ^c	P value ^c
Tumour side ^a				
Right	1.0		1.0	
Left	0.76 (0.56-1.05)	0.10	1.33 (0.55-3.19)	0.53
T stage ^b				
T3	1.0		1.0	
T4	1.35 (0.95-1.92)	0.10	2.11 (1.10-4.06)	0.03
Depth of tumour extension				
Continuous	1.03 (1.01-1.05)	0.0005	1.02 (0.98-1.05)	0.39
≤7	1.0		1.0	
>7	1.74 (1.26-2.38)	0.001	1.18 (0.61-2.26)	0.62
Maximum tumour thickness				
Continuous	1.14 (1.00-1.29)	0.05	1.19 (1.00-1.40)	0.045
≤25	1.0		1.0	
>25	1.51 (1.08-2.12)	0.02	2.26 (1.18-4.34)	0.01
N stage ^b				
N0	1.0		1.0	
N1	1.03 (0.69-1.54)	0.88	1.83 (0.61-5.49)	0.28
N2	1.19 (0.77-1.84)	0.42	3.09 (1.04-9.20)	0.04
Node ≥10mm				
No	1.0		1.0	
Yes	1.35 (0.98-1.87)	0.07	1.72 (0.90-3.32)	0.10
EMVI				
Absent	1.0		1.0	
Present	1.32 (0.95-1.83)	0.10	1.82 (0.86-3.85)	0.12




Oxaliplatin provides benefit in dMMR tumors

10-y DFS (stages II and III)


Forest plot OS

Significant benefit from oxaliplatin, aHR for OS:
MSI: 0.52 (95% CI, 0.28-0.93)
MSS: 0.89 (95% CI, 0.74-1.06)

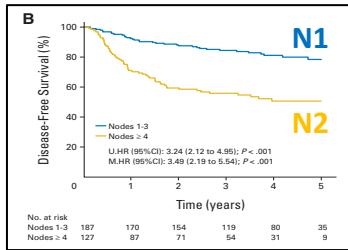
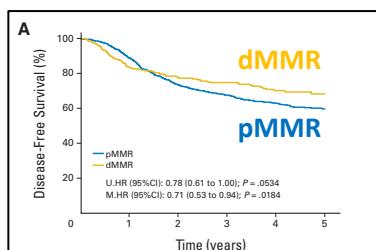
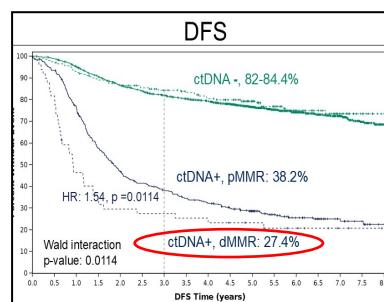

dMMR/MSI remains a favorable prognostic factor in stage III receiving adjuvant FOLFOX (N0147 and PETACC8)

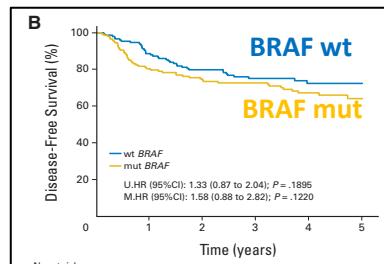
Figure 2. Disease-Free Survival

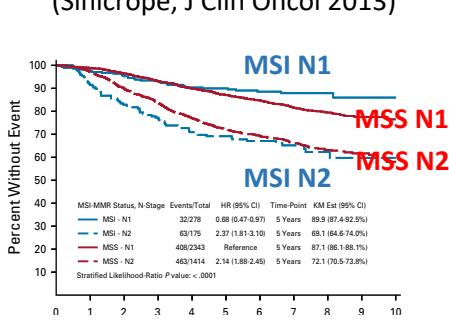
Among dMMR/MSI: distal, N2 and ctDNA+ have poor outcome

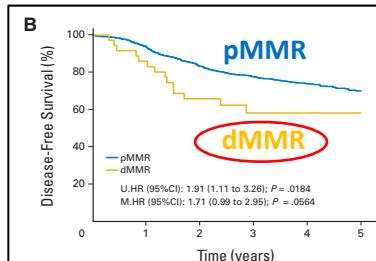

N2

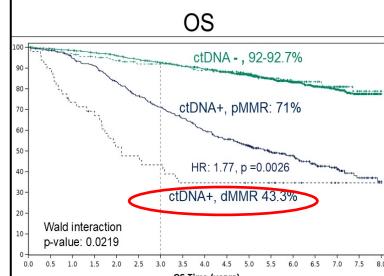

N0147

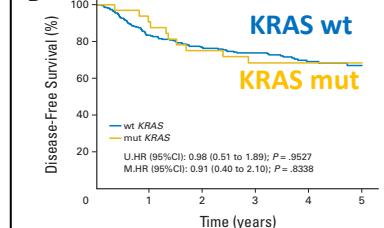
(Sinicrope, J Clin Oncol 2013)


Distal


ctDNA+


KRAS and BRAF


Proximal

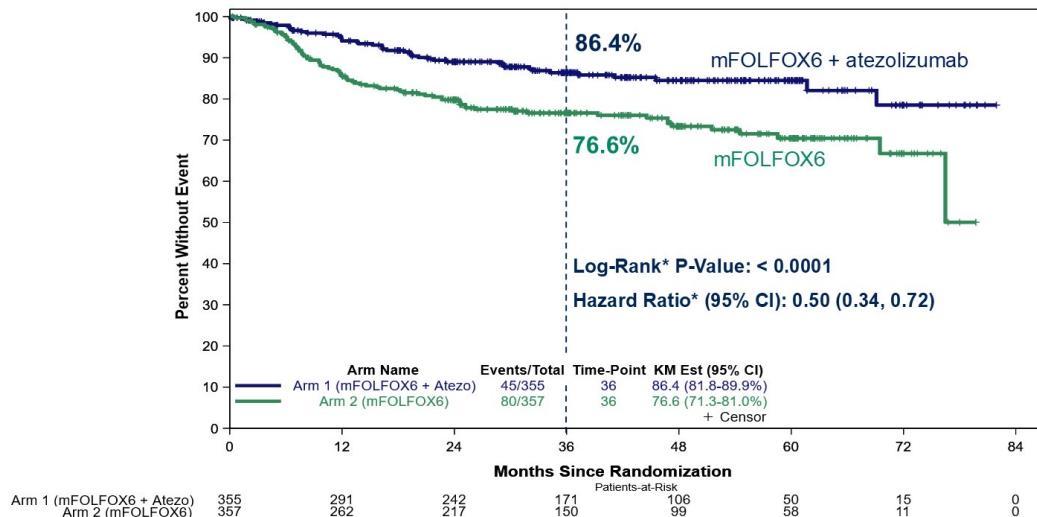

Distal

OS

KRAS wt

(Cohen, J Clin Oncol 2021)

(Sinicrope, J Clin Oncol 2013)

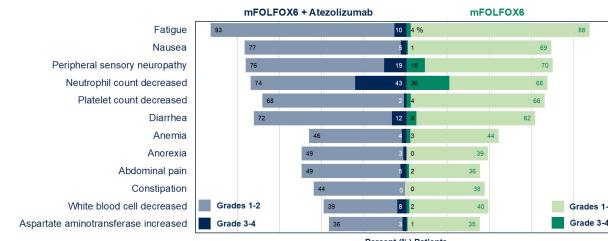

(Sinicrope, ASCO 2025)

(Sinicrope, J Clin Oncol 2013)

ATOMIC trial (Phase III): Adding atezolizumab to mFOLFOX6 significantly improves DFS for dMMR stage III

10

Primary Endpoint: DFS

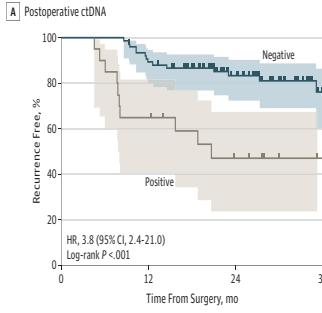

Confirmed dMMR by central reference laboratory: Log-Rank P-Value: 0.0007, Hazard Ratio (95% CI): 0.53 (0.36, 0.79)

*Stratified by randomization factors

Median follow-up = 37.2 mos

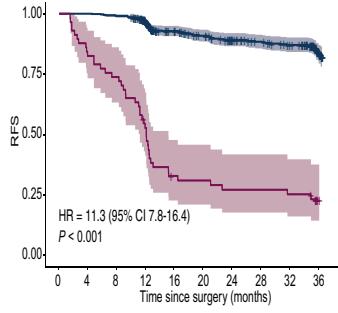
Safety Summary

Characteristics	mFOLFOX6 + Atezo (N=346) ^a	mFOLFOX6 (N=334) ^a
Any Grade AE, % (n)	100% (346)	95.1% (329)
Treatment-related	99.7% (345)	94.2% (326)
Grade 3-4 AE, % (n)	83.8% (290)	69.1% (239)
Treatment-related	72.3% (250)	59.2% (205)
Grade 5 AE, % (n)	1.7% (6)	0.6% (2)
Treatment-related	0.6% (2)*	0.0% (0)



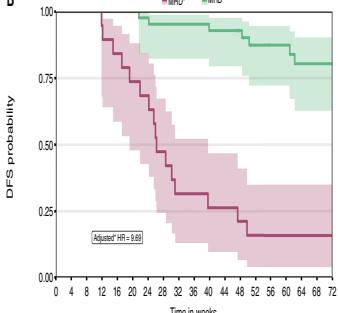
3. Circulating tumour DNA (ctDNA)

Positive ctDNA status is a strong prognostic factor for recurrence


Australian cohort Tie, JAMA Oncol 2019

No. at risk	Negative	Positive
At risk	76	20
Number at risk	68	13
Number at risk	44	7
Number at risk	14	2

N = 100
Stage III
SafeSeq
ctDNA+ post-Sx **21%**
HR **3.8**


Danish cohort Henriksen, Ann Oncol 2024

-ctDNA	740	740	733	576	396	377	351	336	323	164
+ctDNA	57	47	42	29	17	16	14	14	13	6

N = 851
Stage II/III
dPCR
ctDNA+ post-Sx **7%**
HR **11.3**

GALAXY Nakamura, Clin Cancer Res 2025

Number at risk	19	19	19	18	16	14	13	9	6	6	5	5	4	3	3	3	3	3	3
Number at risk	197	129	113	85	52	37	17	9	2	0	0	0	0	0	0	0	0	0	0

ctDNA- Stage I 197

ctDNA- Stage II 543

ctDNA+ Stage II 359

ctDNA+ Stage III 288

ctDNA+ Stage IV 209

ctDNA+ Stage V 135

ctDNA+ Stage VI 83

ctDNA+ Stage VII 47

ctDNA+ Stage VIII 21

ctDNA+ Stage IX 4

ctDNA+ Stage X 1

ctDNA+ Stage XI 0

ctDNA+ Stage XII 0

ctDNA+ Stage XIII 0

ctDNA+ Stage XIV 0

ctDNA+ Stage XV 0

ctDNA+ Stage XVI 0

ctDNA+ Stage XVII 0

ctDNA+ Stage XVIII 0

ctDNA+ Stage XIX 0

ctDNA+ Stage XX 0

ctDNA+ Stage XXI 0

ctDNA+ Stage XXII 0

ctDNA+ Stage XXIII 0

ctDNA+ Stage XXIV 0

ctDNA+ Stage XXV 0

ctDNA+ Stage XXVI 0

ctDNA+ Stage XXVII 0

ctDNA+ Stage XXVIII 0

ctDNA+ Stage XXIX 0

ctDNA+ Stage XXX 0

ctDNA+ Stage XXXI 0

ctDNA+ Stage XXXII 0

ctDNA+ Stage XXXIII 0

ctDNA+ Stage XXXIV 0

ctDNA+ Stage XXXV 0

ctDNA+ Stage XXXVI 0

ctDNA+ Stage XXXVII 0

ctDNA+ Stage XXXVIII 0

ctDNA+ Stage XXXIX 0

ctDNA+ Stage XXXX 0

ctDNA+ Stage XXXXI 0

ctDNA+ Stage XXXXII 0

ctDNA+ Stage XXXXIII 0

ctDNA+ Stage XXXXIV 0

ctDNA+ Stage XXXXV 0

ctDNA+ Stage XXXXVI 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

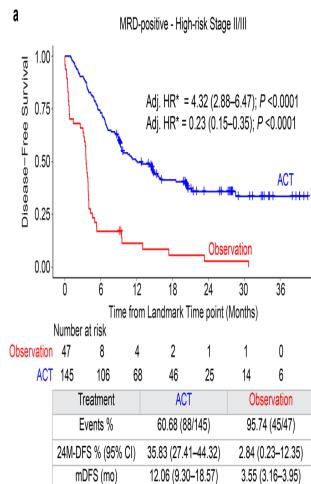
ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

ctDNA+ Stage XXXXIX 0

ctDNA+ Stage XXXXVII 0

ctDNA+ Stage XXXXVIII 0

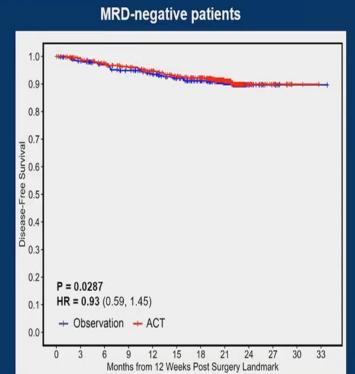
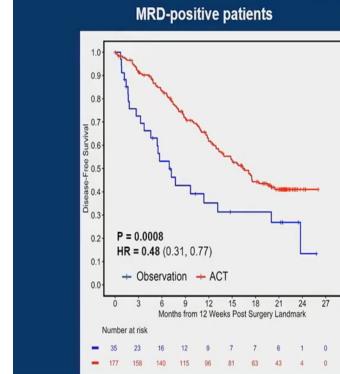

ctDNA+ Stage XXXXIX 0

ctDNA+

ctDNA is also able to predict benefit from adjuvant CT

GALAXY

Nakamura et al, Nat Med 2024

MRD+

MRD-

BESPOKE

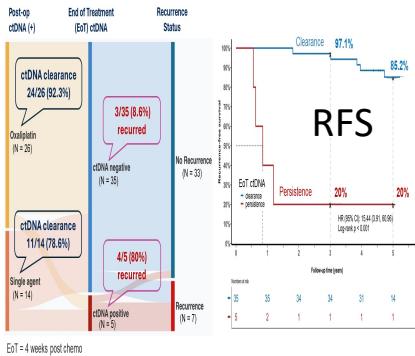
Shah et al, ASCO GI 2025

Adjuvant strategy

ACT	Observation	
Numbers of events (%)	96/177 (54.24)	29/35 (82.86)
2-year DFS post surgery, % (95% CI)	40.3 (33.3 - 48.9)	24.7 (13.2 - 46.3)
Median DFS post surgery, months (95%)	17.7 (14.6 - 21.4)	7.1 (4.6 - 21.4)

Adjuvant strategy

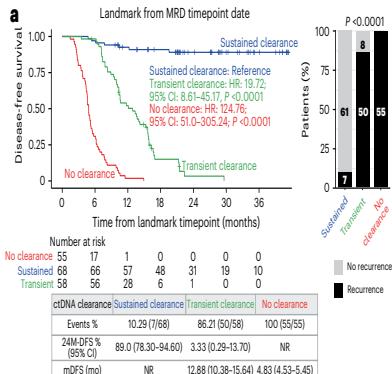
ACT	Observation	
Numbers of events (%)	43/506 (8.50)	37/408 (9.07)
2-year DFS post surgery, % (95% CI)	89.7 (86.7-92.9)	89.5 (86.2-92.9)
Median DFS post surgery, months (95%)	Not reached	Not reached


MRD+

MRD-

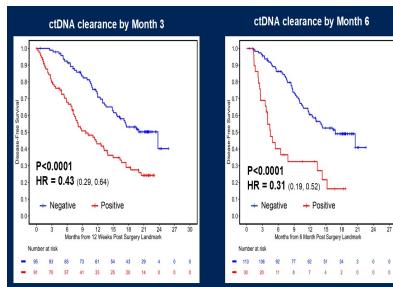
Clearance of ctDNA as survival predictor

DYNAMIC (Stage II)


Tie, NEJM 2022; Nat Med 2025

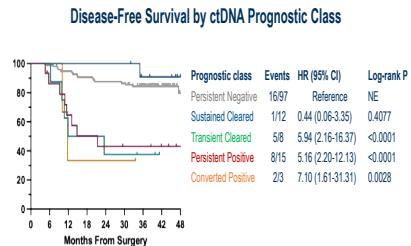
Clearance
(4w post adj CT): 87%

GALAXY (Stage I – IV)


Nakamura, Nat Med 2024

Clearance after adj CT: 68%
Sustained clearance: **37%**

BESPOKE (Stage II-III)

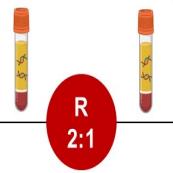

Shah, ASCO GI 2025

Clearance:
12w 49%
20w 67%
6m 73%
Overall 75%

PEGASUS (Stage II-III)

Marsoni, ESMO 2025

Persistent negative: 72%
Sustained cleared: **9%**
Transient cleared: 6%
No clearance: 11%
Converted positive: 2%


DYNAMIC-II: first randomized phase II trial (stage II)

**Tumor-informed:
SaferSeqS**

**Stage II
Colon Cancer**

- R0 resection
- ECOG 0 – 2
- Staging CT within 8 weeks
- Provision of adequate tumor tissue within 4 weeks post-op
- No synchronous colorectal cancer

Plasma Collections
Week 4 + 7 post-op

ctDNA-Guided Management

- ctDNA-Positive → Adjuvant Chemo (oxaliplatin-based or single agent FP)
- ctDNA-Negative → Observation

ctDNA-Positive = Positive result at week 4 and/or 7

Standard Management

Adjuvant treatment decisions based on conventional clinico-pathologic criteria

Stratification Factors

- T stage (T3 vs T4)
- Type of participating center (metropolitan vs regional)

Surveillance:

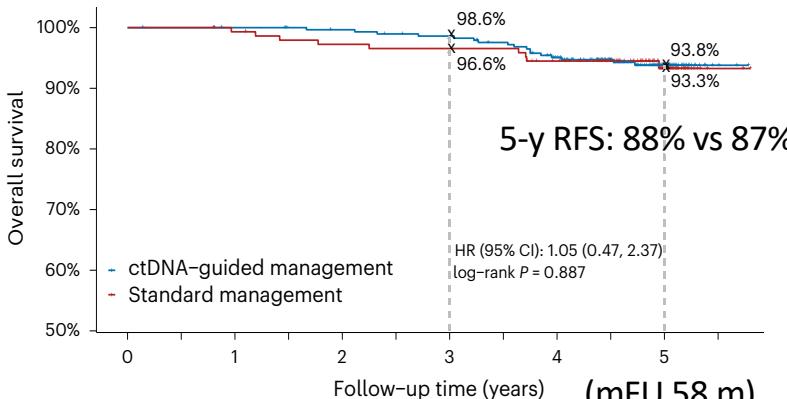
- CEA → 3-monthly for 24M, then 6-monthly for 36M
- CT C/A/P → 6-monthly for 24M, then at 36M

DYNAMIC

Tie et al, NEJM 2022; ASCO 2024; Nat Med 2025

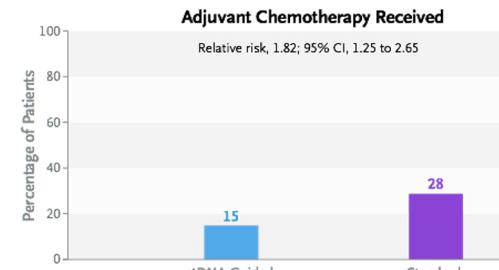
Endpoints

Primary


- RFS rate at 2 years

Key Secondary

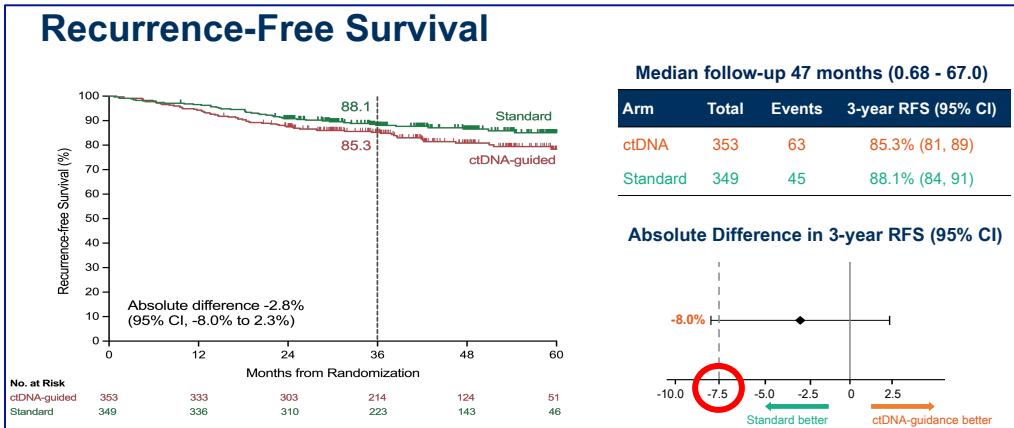
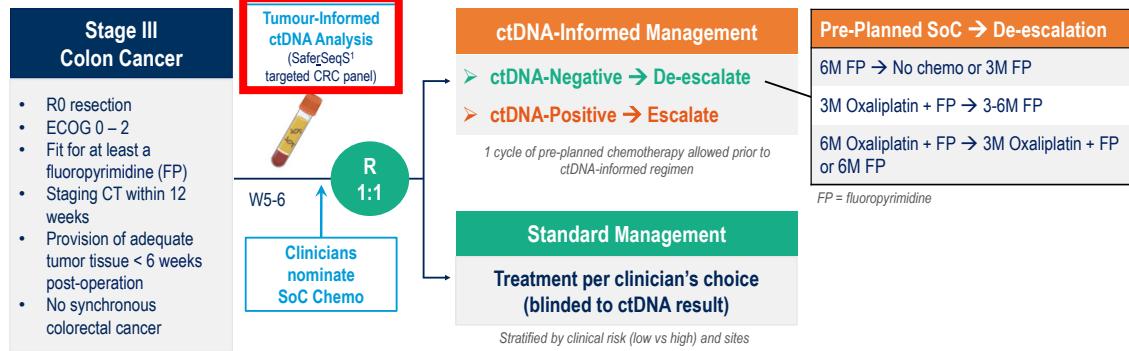
- Proportion receiving adjuvant chemo


Secondary

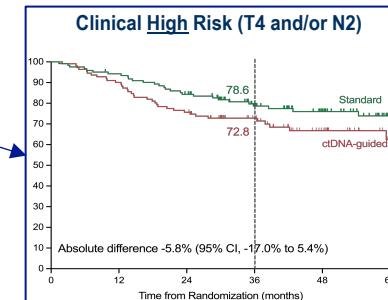
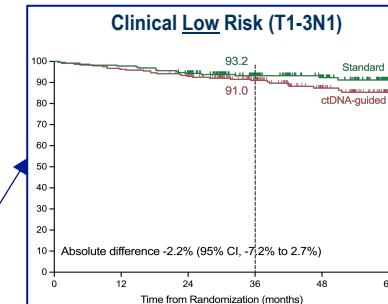
- RFS by ctDNA status for ctDNA-guided arm
- TTR
- OS

5-y RFS: 88% vs 87%

HR (95% CI): 1.05 (0.47, 2.37)
log-rank P = 0.887

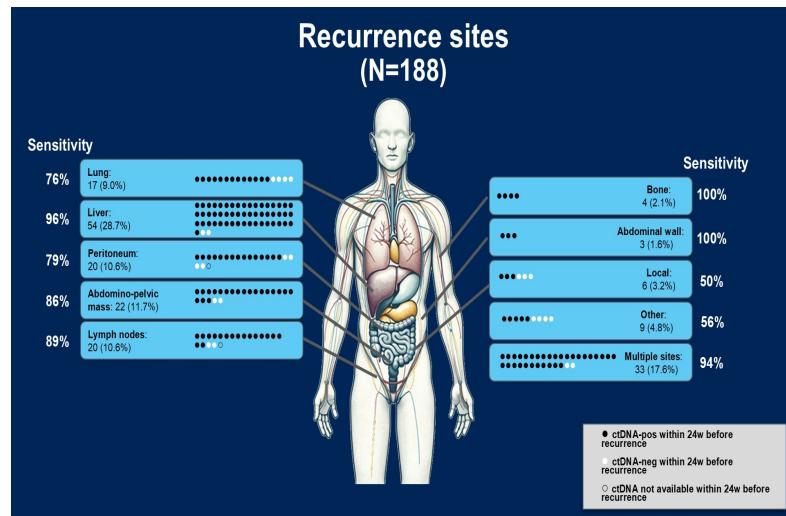



Relative risk, 1.82; 95% CI, 1.25 to 2.65



Adjuvant Chemotherapy Received

Management	Percentage of Patients
ctDNA-Guided Management	15
Standard Management	28

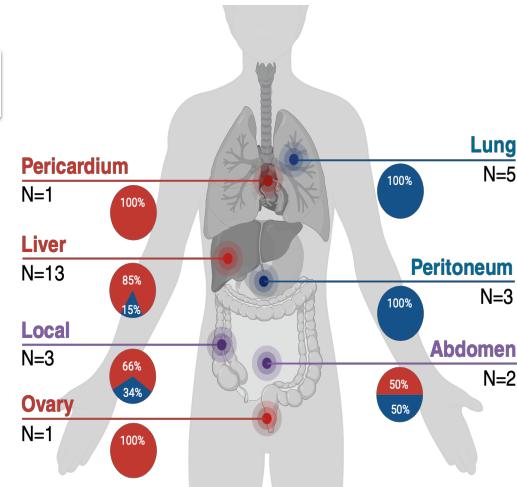
DYNAMIC-III (randomised phase II/III): ctDNA-guided adjuvant CT de-escalation in stage III (ctDNA negative)


➤ Markedly reduced oxaliplatin exposure (88.6% → 34.8%)

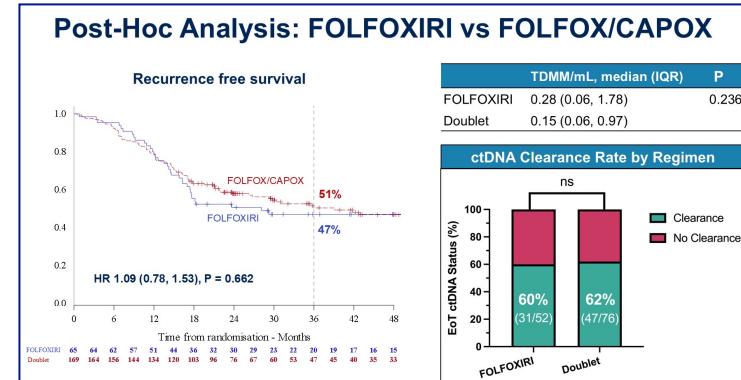
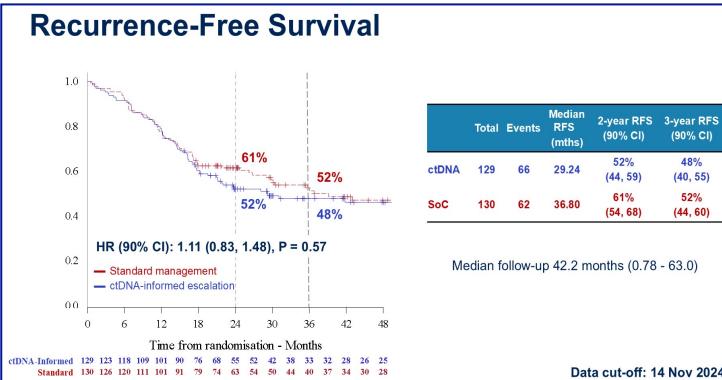
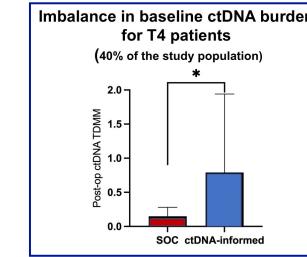
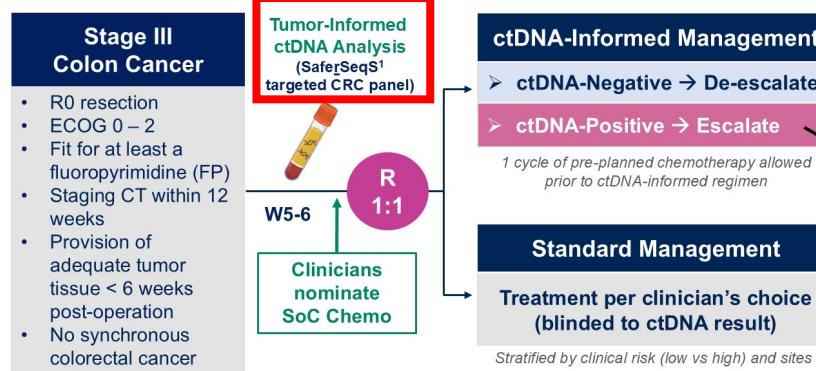
Lung, peritoneum and local recurrences are typically not detected

BESPOKE (Stage II-III)

Shah, ASCO GI 2025



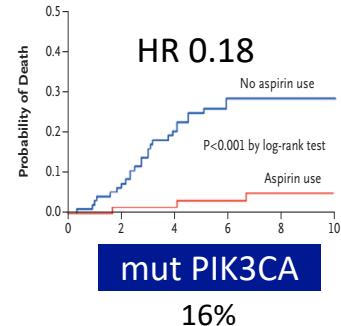
PEGASUS (Stage II-III)





Marsoni, ESMO 2025

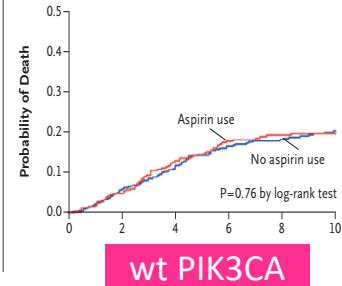
Site-specific relapse vs ctDNA detection

ctDNA detection rate
● 50% detected
○ 50% not detected

DYNAMIC-III (randomised phase II/III): ctDNA-guided adjuvant CT **escalation** in stage III (ctDNA **positive**)

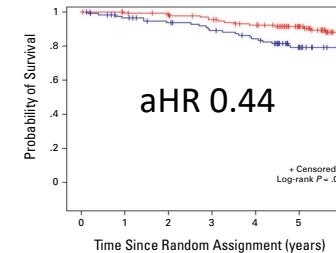
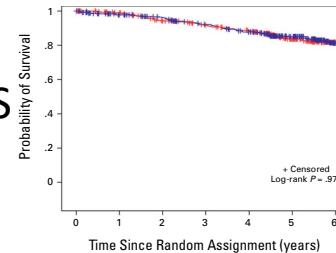


4. PIK3CA mutations

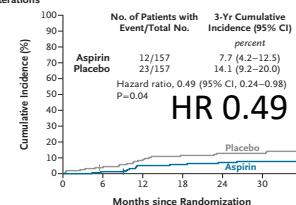

Aspirin and celecoxib: predictive value of PIK3CA

Liao, NEJM 2012 (Aspirin, I-IV CCR)

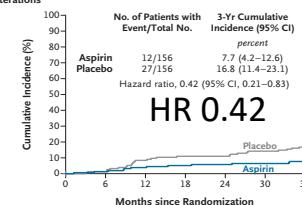
A Colorectal Cancer-Specific Mortality, Mutant PIK3CA

B Colorectal Cancer-Specific Mortality, Wild-Type PIK3CA


Nowak, JCO 2024 (Celecoxib, III colon, CALGB/SWOG 80702)

OS



Martling, NEJM 2025 (Aspirin, I-III CCR, ALASCCA)

A Colorectal Cancer Recurrence among Patients with Group A Alterations

B Colorectal Cancer Recurrence among Patients with Group B Alterations

PIK3CA
15-30%

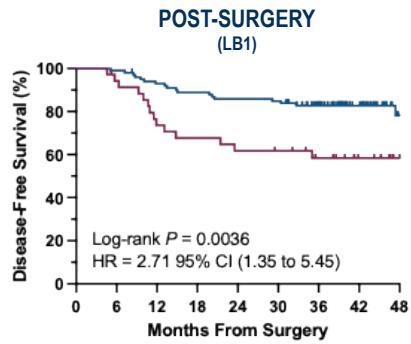
Aspirin
160 mg
daily
x 3y

PIK3CA hotspot mutations
(exon 9 or 20)

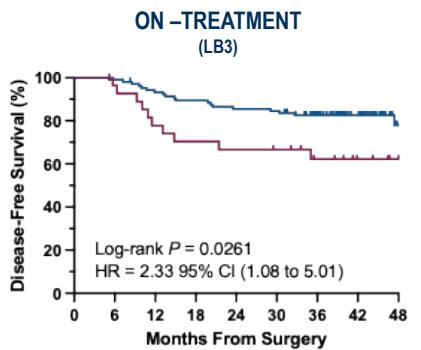
Other moderate/ high-impact
variants in PIK3CA, PIK3R1, PTEN

Conclusions:

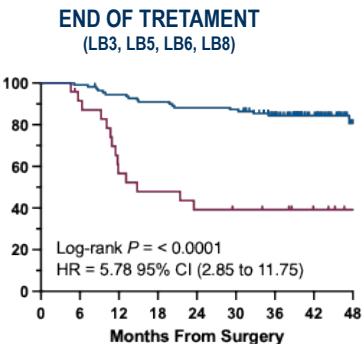
- 1) Routine use of genomic **signatures, KRAS/BRAF mutations and immunoscore** is not currently recommended to guide adjuvant treatment decisions for colon cancer in clinical practice.
- 2) **MSI** is the most relevant molecular factor in localised stages of colon cancer due to its prognostic and predictive value (improved survival for MSI/dMMR tumours, and lack of benefit from adjuvant fluoropyrimidines alone, particularly in stage II).
- 3) **ctDNA** is a powerful prognostic factor for recurrence, and it is also able to predict the benefit of adjuvant CT. Clearance of ctDNA following adjuvant CT is associated with improved survival, particularly when it is sustained over time. Ongoing clinical trials aim to enable the incorporation of liquid biopsy into routine clinical practice.
- 4) Activating **PIK3CA** mutations allow the selection of patients who may benefit from adjuvant aspirin, with a significantly lower incidence of colorectal cancer recurrence.



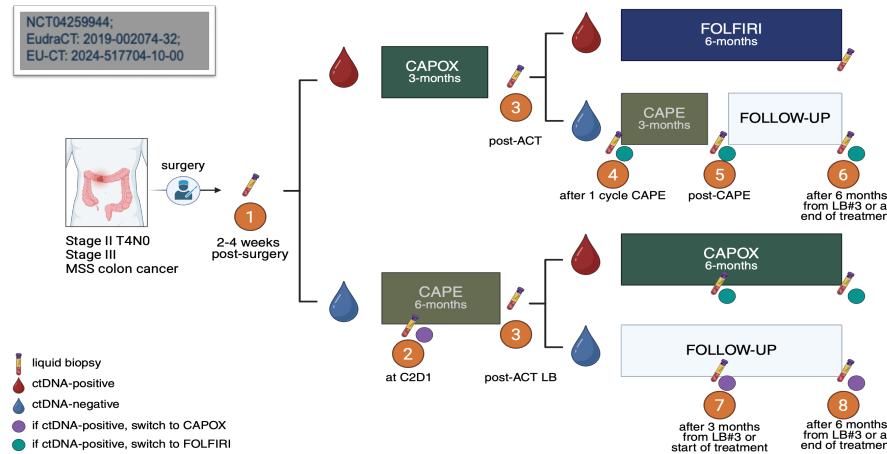
Thank you



Liquid biopsy is prognostic before, during and after adjuvant treatment (PEGASUS)

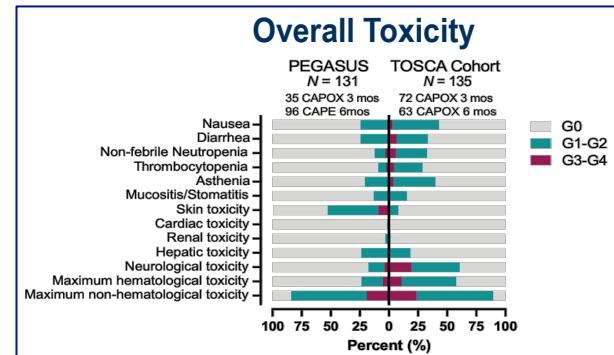
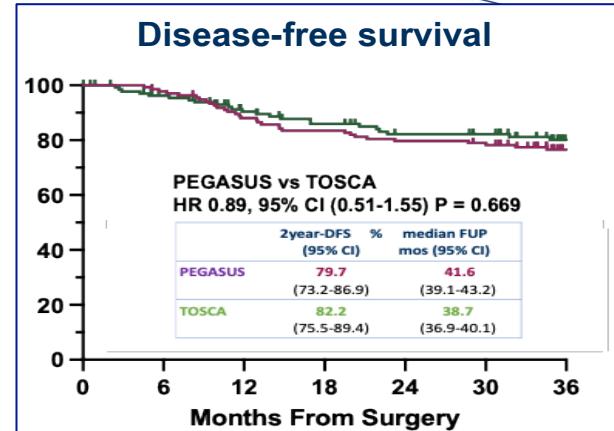

SIMPOSIO INTERNACIONAL
INTERNATIONAL SYMPOSIUM
XXXIII
11 - 12 DE DICIEMBRE DE 2025
OVIEDO

No at risk:												
ctDNA Negative	100	99	92	88	85	84	69	41	15			
ctDNA Positive	35	32	25	23	21	20	16	11	6			


No at risk:												
ctDNA Negative	104	103	96	92	88	87	72	43	15			
ctDNA Positive	28	26	21	19	18	17	13	9	6			

No at risk:												
ctDNA Negative	111	110	104	100	97	96	78	48	20			
ctDNA Positive	24	21	13	11	9	8	7	4	1			

PEGASUS: a feasibility trial (stage III and high-risk stage II)

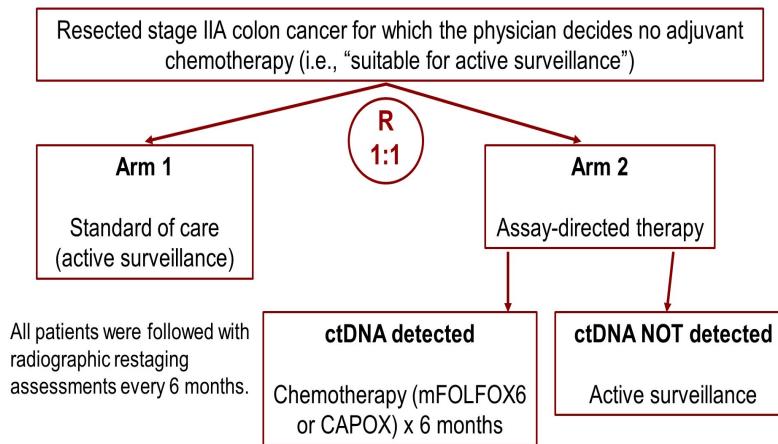


Reveal L1.2 test (Guardant Health, Inc.)

- Plasma-only assay
- Genetic | Epigenetic signal
- Early-generation version

PRIMARY ENDPOINT

Number of false negative cases within 2 years

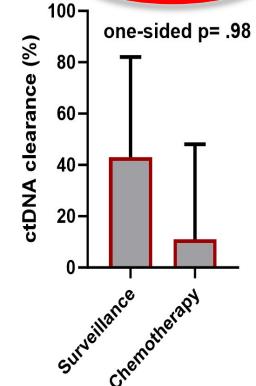
- 100 ctDNA- patients → 12 relapses (2 local+10 distant) within 2 years
- 2-year recurrence-free rate: 88% (90% CI, 81-93)
- Primary endpoint not formally powered
- 2-year recurrence-free rate exceeded the 85% benchmarking, upper CI 93% crossed H₁ target 92% supporting clinical adequacy despite reduced power.


COBRA: Randomized phase II-III in stage IIA with <12LN

COBRA

Morris et al, ASCO GI 2024

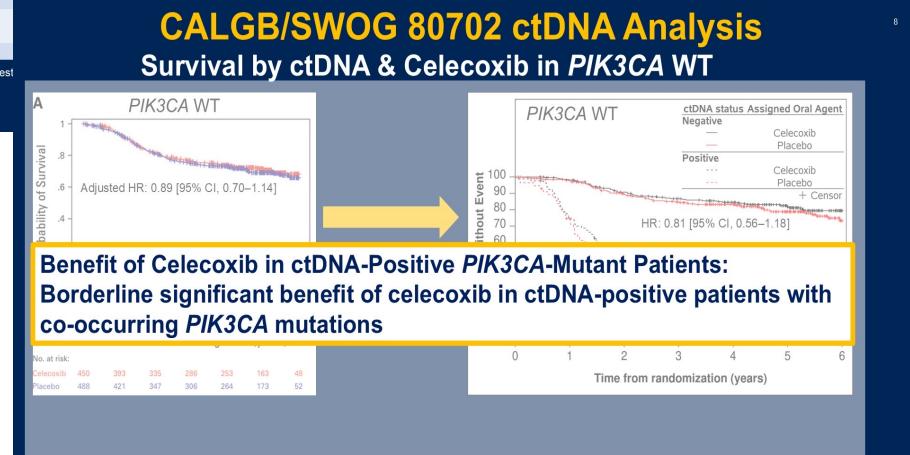
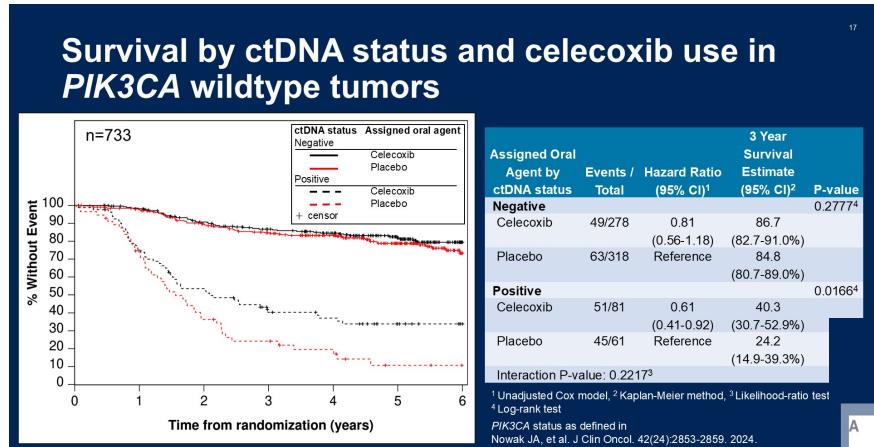
NRG-GI005 (COBRA) Study Schema


Phase II Endpoint Analysis: ctDNA(+) baseline participants

- Among 596 participants with baseline ctDNA status available, ctDNA(+) detection was observed in 33 (5.54%).
- 16 participants with "ctDNA detected" status at baseline
 - Arm 1: Surveillance 7 participants
 - Arm 2: Chemotherapy 9 participants
- Clearance of ctDNA at 6 months among ctDNA(+) participants at baseline was observed in:
 - Arm 1 (surveillance): 3 of 7 (43%, 95% CI 10 - 82%) participants
 - Arm 2 (chemotherapy): 1 of 9 patients (11%, 95% CI 0.3 - 48%) participants
- Because the 1-sided Fisher's Exact Test yields $p = 0.98$ exceeded 0.35, H_0 was not rejected, and the decision rule calls for early stopping due to futility.

ctDNA + postCx:

5%



ctDNA clearance
43% vs 11%

GALAXY: Spontaneous clearance rate 1.9%

Value of ctDNA in PIK3CA wt (CALGB/SWOG 80702)

